Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)
\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)
Chọn C.
Ta có
C = [ ( sin2x + cos2x) – sin2cos2x]2 - [ ( sin4x + cos4x) 2 - 2sin4x.cos4x]
= 2[ 1-sin2x.cos2x]2 - [ ( sin2x + cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x
= 2[ 1-sin2x.cos2x]2 - [1-sin2x.cos2x]2 + 2sin4x.cos4x
= 2( 1 - 2sin2x.cos2x + sin4x.cos4x)- ( 1 - 4sin2xcos2x + 4sin4x.cos4x) + 2sin4x.cos4x
= 1.
\(A=\frac{1}{2}\left(\frac{sin^2x}{cos^2x}-1\right)\frac{cosx}{sinx}+cos4x.cot2x+sin4x\)
\(A=\frac{-1}{2}\left(\frac{cos^2x-sin^2x}{cos^2x}\right)\frac{cosx}{sinx}+cos4x.cot2x+sin4x\)
\(A=\frac{-cos2x}{2cosx.sinx}+cos4x.cot2x+sin4x\)
\(A=-cot2x+cos4x.cot2x+sin4x\)
\(A=cot2x\left(cos4x-1\right)+sin4x\)
\(A=\frac{cos2x}{sin2x}.\left(1-2sin^22x-1\right)+sin4x\)
\(A=\frac{-2cos2x.sin^22x}{sin2x}+sin4x\)
\(A=-sin4x+sin4x=0\)
\(=\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x-\left(\dfrac{1}{2}sin4x-\dfrac{1}{2}sin2x\right)\)
\(=\dfrac{1}{2}sin6x-\dfrac{1}{2}sin4x\)
\(=cos5x.sinx\)
\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt
Chọn C.
Ta có: C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x)
= 2 [ (sin2x + cos2x) 2 - sin2x.cos2x]2 - [ (sin4x + cos4x)2 - 2sin4x.cos4x]
= 2[ 1 - sin2x.cos2x]2 - [ (sin2x+ cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x
= 2[ 1- sin2x.cos2x]2 - [ 1 - 2sin2x.cos2x]2 + 2sin4x.cos4x
= 2( 1 - 2sin2xcos2x+ sin4x.cos4x) –( 1- 4sin2xcos2x+ 4sin4xcos4x) + 2sin4x.cos4x
= 1.
\(C=\frac{\cos4x.\tan2x-\sin4x}{\cos4x.\cot2x+\sin4x}\)
\(=\frac{\cos4x.\sin2x-\sin4x.\cos2x}{\cos4x.\cos2x+\sin4x.\sin2x}.\frac{\sin2x}{\cos2x}\)
\(=\frac{\sin\left(2x-4x\right)}{\cos\left(4x-2x\right)}.\frac{\sin2x}{\cos2x}=-\frac{\sin^22x}{\cos^22x}=-\tan^22x\)