Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2019}{1\times2}+\frac{2019}{2\times3}+\frac{2019}{3\times4}+...+\frac{2019}{2018\times2019}\)
\(=2019\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2018\times2019}\right)\)
\(=2019\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2019\left(1-\frac{1}{2019}\right)\)
\(=2019\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2019\times\frac{2018}{2019}\)\(=\frac{2019\times2018}{2019}=2018\)
a/ \(A=2018\cdot2018\)
\(=\left(2019-1\right)\cdot2018=2019\cdot2018-2018\)
\(B=2017\cdot2019\)
\(=\left(2018-1\right)\cdot2019=2018\cdot2019-2019\)
\(\Rightarrow A>B\)
b/
\(A=2018\cdot2019\)
\(=\left(2017+1\right)\cdot2019=2017\cdot2019+2019\)
\(B=2017\cdot2020\)
\(=2017\cdot\left(2019+1\right)=2017\cdot2019+2017\)
\(\Rightarrow A>B\)
a) \(2021^{2020}-2021^{2019}=2021^{2019}.\left(2021-1\right)=2021^{2019}.2020\)
b) Ta có :\(7x-140=3.7^2\)
\(\implies\) \(7x-140=3.49\)
\(\implies\) \(7x-140=147\)
\(\implies\) \(7x=287\)
\(\implies\) \(x=41\)
1. \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}=\dfrac{2020}{2021}\)
Giải:
1) \(\dfrac{2019}{2020}-\left(\dfrac{2019}{2020}-\dfrac{2020}{2021}\right)\)
\(=\dfrac{2019}{2020}-\dfrac{2019}{2020}+\dfrac{2020}{2021}\)
\(=\left(\dfrac{2019}{2020}-\dfrac{2019}{2020}\right)+\dfrac{2020}{2021}\)
\(=0+\dfrac{2020}{2021}\)
\(=\dfrac{2020}{2021}\)
2) \(\dfrac{2}{9}+\dfrac{7}{9}:\left(\dfrac{42}{5}-\dfrac{7}{5}\right)\)
\(=\dfrac{2}{9}+\dfrac{7}{9}:7\)
\(=\dfrac{2}{9}+\dfrac{1}{9}\)
\(=\dfrac{1}{3}\)
3) \(\dfrac{3}{4}+\dfrac{x}{4}=\dfrac{5}{8}\)
\(\dfrac{x}{4}=\dfrac{5}{8}-\dfrac{3}{4}\)
\(\dfrac{x}{4}=\dfrac{-1}{8}\)
\(\Rightarrow x=\dfrac{4.-1}{8}=\dfrac{-1}{2}\)
4) \(\left|3x+1\right|-\dfrac{1}{4}=\dfrac{-1}{4}\)
\(\left|3x-1\right|=\dfrac{-1}{4}+\dfrac{1}{4}\)
\(\left|3x-1\right|=0\)
\(3x-1=0\)
\(3x=0+1\)
\(3x=1\)
\(x=1:3\)
\(x=\dfrac{1}{3}\)
Chúc bạn học tốt!
a: =58(57+150-125)=58x82=4756
b: \(=9\cdot5-4\cdot7+83=45-28+83=100\)
c: =(2019-2019)+(-247-53)=-300
d: \(=13\cdot70-50\cdot\left[10:2+8\right]=910-50\cdot13=910-650=260\)
\(a,=58.\left(57+150-125\right)\\ =58.82=4756\\ b,=9.5-4.7+83.1\\ =45-28+83=100\)
a) 58.57+58.150-58.125
=58.(57+150-125)
=58. 82
= 4756
b)32.5-22.7+83.20190
=9.5-4.7+83
=45-28+83
=100
c)2019+(-247)+(-53)-2019
=(2019-2019)+[ (-247)+(-53)]
0+(-300)
= -300
d)13.70-50 [(19-32):2+23]
=13.70-50[10:2+8]
=13.70-50.13
=13.(70-50)
=13.20
=260
2.
a)x-36:18=12-5
x-36:18=6
x-36=6.18
x-36=108
x=108+36
x= 144
b)92-(17+x)=72
17+x=92-72
17+x=20
x=20-17
x=3
c)720:[41-(2x+5)]=40
41-(2x+5)=720:40
41-(2x+5)= 18
2x+5=41-18
2x+5=23
2x=23-5
2x=18
x=18:2
x=9
d) (x+2)3 -23=41
(x+2)3 =41+23
(x+2)3 =64
=> (x+2)3 =43
=>x+2=4
=>x=4-2
=>x=2
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)
Câu 1: Thực hiện phép tính A = -125 x 2^3 + 71 x 53 + 53 x (-29) - 42 x 53 Bước 1: Tính các giá trị đơn giản 2^3 = 8 -125 x 8 = -1000 71 x 53 = 3763 53 x (-29) = -1537 -42 x 53 = -2226 Bước 2: Thay vào biểu thức ban đầu A = -1000 + 3763 - 1537 - 2226 Bước 3: Tiến hành cộng và trừ A = -1000 + 3763 = 2763 A = 2763 - 1537 = 1226 A = 1226 - 2226 = -1000 Vậy, A = -1000. Câu 2: Tính giá trị biểu thức A = 2019 1 × 2 + 2019 2 × 3 + 2019 3 × 4 + ⋯ + 2019 2018 × 2019 1×2 2019 + 2×3 2019 + 3×4 2019 +⋯+ 2018×2019 2019 Biểu thức này có thể viết lại dưới dạng tổng: 𝐴 = ∑ 𝑘 = 1 2018 2019 𝑘 ( 𝑘 + 1 ) A=∑ k=1 2018 k(k+1) 2019 Để đơn giản hóa mỗi hạng tử, ta phân tích phân số 1 𝑘 ( 𝑘 + 1 ) k(k+1) 1 thành: 1 𝑘 ( 𝑘 + 1 ) = 1 𝑘 − 1 𝑘 + 1 k(k+1) 1 = k 1 − k+1 1 Do đó, ta có thể viết lại biểu thức A như sau: 𝐴 = 2019 × ( 1 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 2018 − 1 2019 ) A=2019×( 1 1 − 2 1 + 2 1 − 3 1 +⋯+ 2018 1 − 2019 1 ) Tất cả các hạng tử sẽ tự rút gọn, và ta chỉ còn lại: 𝐴 = 2019 × ( 1 − 1 2019 ) A=2019×(1− 2019 1 ) Bây giờ tính toán: 𝐴 = 2019 × 2018 2019 = 2018 A=2019× 2019 2018 =2018 Vậy A = 2018.