Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
Ta có abc chia hết cho 37 thì abc0 chia hết cho 37.
-> a000 + bc0 chia hết cho 37
-> 1000xa +bc0 chia hết cho 37
-> 999xa + a + bc0 chia hết cho 37
-> 27x37xa + bca chia hết cho 37
Do 27x37xa chia hết cho 37 nên bca chia hết cho 37.
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)
\(\Rightarrow999a+a+\overline{bc0}⋮27\)
\(\Rightarrow27.37a+\overline{bca}⋮27\)
do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)
(aaa + bbb) = 111a + 111b = 111( a + b )
Vì 111 chia hết cho 37 => ( a + b ) chia hết cho 37
=> ( aaa + bbb ) chia hết cho 37
(aaa+bbb):37
(a x 100 + a x 10 + a + b x 100 + b x 10 + b ):37
(a x (100 + 10 +1 ) + b x (100 + 10 + 1 ) : 37
(a x 111 + b x 111):37
(111 x (a + b) :37
( 37 x 3 x (a + b) :37
vậy aaa + bbb : 37
chứng minh:bca⋮37
bca=b.100+c.10+a
bca=b.100+c.10+a.1
bca=(b+c+a).(100+10+1)
bca=(b+c+a).111
bca=(b+c+a).3.37
⇒bca⋮37