Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@Akai Haruma, @Ace Legona, @Ace Legona, @Thiên Thảo giúp mk vs!!!!
a: Xét ΔABC vuông tại A có cos B=AB/BC
=>AB/BC=1/2
=>AB=3cm
=>AC=3 căn 3(cm)
b: \(HB=\dfrac{AB^2}{BC}=1.5\left(cm\right)\)
HC=6-1,5=4,5(cm)
a) + ΔADB ∼ ΔAEC ( g.g )
\(\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\)
+ ΔADE ∼ ΔABC ( c.g.c )
b) + AC // MH \(\Rightarrow\frac{AH}{AB}=\frac{MC}{CB}\)
+ AB // MK \(\Rightarrow\frac{CK}{AC}=\frac{MC}{CB}\)
\(\Rightarrow\frac{CK}{AC}-\frac{AH}{AB}=0\)
\(\Rightarrow\left(\frac{CK}{AC}+1\right)-\frac{AH}{AB}=1\)
\(\Rightarrow\frac{AK}{AC}-\frac{AH}{AB}=1\)
kẻ AK vuông góc BC
AH vuông góc AD
góc A = 105\(^o\), góc B = 60\(^o\)
⇒ góc C = 15\(^o\)
ta có \(tan15=2-\sqrt{3}\) ⇒ \(\dfrac{AK}{KC}\)=15\(^0\)
AK = \(\sqrt{AD^2-DK^2}\) ⇒ AK= \(\dfrac{\sqrt{3}}{2}\)
suy ra KC = \(\dfrac{3+2\sqrt{3}}{2}\)
AC2= AK2 + KC2 = \(\dfrac{3}{4}+\dfrac{21+12\sqrt{3}}{4}\)
⇒ AC2 = \(6+3\sqrt{3}\)
⇒ \(\dfrac{1}{CA^2}=\dfrac{1}{6+3\sqrt{3}}\) (1)
Xét tam giác ABH có : AB=1 (gt)
suy ra BH = 2 và AH = \(\sqrt{3}\)
suy ra DC= \(2+\sqrt{3}\)
\(\dfrac{AD^2}{AC^2}=\dfrac{EB^2}{BC^2}\) ( TA LÉT)
suy ra AD2=\(\dfrac{6+3\sqrt{3}}{7+4\sqrt{3}}\)= \(6-3\sqrt{3}\)
suy ra \(\dfrac{1}{AD^2}=\dfrac{1}{6-3\sqrt{3}}\) (2)
cộng (1) và (2) suy ra ta có đpcm
Câu 4:
Để C chia hết cho D thì \(x^4+a⋮x^2+4\)
\(\Leftrightarrow x^4-16+a+16⋮x^2+4\)
=>a+16=0
hay a=-16
a)
a)Kẻ DE ⊥ AB, DF ⊥ AC
Tứ giác AEDF có ∡FAE = ∡AED = 90 độ
⇒ Tứ giác AEDF là hình chữ nhật
Ta có: AD là tia phân giác ∡BAC hay ∡EAF
⇒ Tứ giác AEDF là hình vuông
⇒ DE = DF = AD/√2
ΔABC có AB//DF (cùng ⊥ với CA)
⇒ DF/DB = CD/BC
Tương tự: AC//DE ⇒ DE/AC = BD/BC
⇒ DF/AB + DE/AC = (CD+BD)/BD
⇔ AD/(AB√2) + AD/(AC√2) = BC/BC
⇔ 1/AB + 1/AC = √2/AD (đpcm)