K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 5 2018

Lời giải:

Ta có:

\(\frac{a}{b+c}=\frac{2a}{2(b+c)}=\frac{2a}{(b+c)+(b+c)}< \frac{2a}{a+b+c}\) (do mỗi số nhỏ hơn tổng hai số kia thì \(a< b+c\))

Hoàn toàn tương tự:

\(\left\{\begin{matrix} \frac{b}{c+a}< \frac{2b}{a+b+c}\\ \frac{c}{a+b}< \frac{2c}{a+b+c}\end{matrix}\right.\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Ta có đpcm.

+\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{a+c}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\) cộng lại ta được

=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>1\)

+\(\frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+c}{a+b+c}\) cộng lại

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)

10 tháng 10 2018

cho mk hỏi vì sao a/b+c < a+a/a+b+c zậy

29 tháng 6 2021

các bạn giúp tôi với

29 tháng 6 2021

Ghi rõ, dễ hiểu giùm nha!

27 tháng 4 2017

Giải:

\(a,b\) là các số dương \(\Leftrightarrow\dfrac{a}{b}>0\)

Không giảm tính tổng quát

Ta giả sử \(a\ge b\Leftrightarrow a=b+m\left(m\ge0\right)\)

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m}{b}+\dfrac{b}{b+m}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}\)

\(=1+\dfrac{m+b}{b+m}=1+1=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\a=b\end{matrix}\right.\)

Vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (Đpcm)

Nhận xét:

Trong một BĐT có chứa chữ, nếu các chữ \(a\)\(b\) có vai trò như nhau, ta có thể thay \(a\) bởi \(b\); \(b\) bởi \(a\), do đó ta có thể sắp thú tự tùy ý cho nên trong cách giải trên ta đã giả sử \(a\ge b\) mà không sợ mất tính tổng quát.

27 tháng 4 2017

Thiếu đk ab > 0.

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2=2ab\)

Vì ab > 0

\(\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a^2}{ab}+\dfrac{b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

15 tháng 4 2017

Đặt \(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

Ta có:

\(A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}\)\(=\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

\(A< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}\)

\(=\dfrac{a+b+b+c+c+a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ \((1);(2)\) ta có \(1< A< 2\)

Vậy \(A\) không phải là số nguyên

1 tháng 4 2017

Vãi Phân

2 tháng 4 2017

Đm không biết thì trả lời làm chi!!!!!!!!!!!!