Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)
Không mất tính tổng quát, ta lấy \(a=-b\), ta có:
\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)
\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)
Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)
\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)
Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)
Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.
\(18x^2y^2\left(?\right)4x^2y\)
câu b)
\(\left(b\right)6x^3-9x^2=3x^2\left(x-3\right)\)
\(\left(c\right)4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
Thau abc = 2005 vào đề bài ta có:
N = abc.a/ab+abc.a+abc + b/bc+b+abc + c/ac+c+1
N = a^2bc/ab(1+ac+c) + b/b(c+1+ac) + c/ac+c+1
N = ac/1+ac+c + 1/(c+1+ac) + c/ac+c+1
N = ac+1+c/ac+1+c = 1
=> đpcm
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)
Với \(a+b=0\)
Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)
Tương tự cho 2 trường hợp còn lại ta có ĐPCM
\(a_n=\frac{1}{\sqrt{n}\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(S_{2005}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{1+1}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2+1}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3+1}}+...+\)
\(\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2005+1}}\)
\(S_{2005}=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2006}}\)
\(S_{2005}=1-\frac{1}{\sqrt{2006}}\)
PS : ko chắc :v
a: \(A=\dfrac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}=2005\)
b: \(B=\dfrac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=2004\)
2005 n ≡1(mod167) 189 7 n ≡ 6 0 n ( m od 167 )
1897 n ≡60 n (mod167) 16 8 n ≡ 1 ( mo d 167 ) 168 n ≡1(mod167) ⇒A≡1+60 n −60 n −1≡0(mod167) ⇒A⋮167 Tương tự ta có: A ⋮ 4 A ⋮ 3 ⇒ A ⋮ 2004
\(B=1+2+3+...+n\Rightarrow2B=n\left(n+1\right)\)
\(A=1^{2005}+2^{2005}+3^{2005}+...+n^{2005}\)
\(\Rightarrow2A=\left(1^{2005}+n^{2005}\right)+\left[2^{2005}+\left(n-1\right)^{2005}\right]+...+\)\(\left[\left(n-1\right)^{2005}+2^{2005}\right]+\left(n^{2005}+1^{2005}\right)\)
Các biểu thức trong dấu ngoặc đều chia hết cho n + 1 nên:
\(2A⋮\left(n+1\right)\) (1)
Lại có: \(2A=\left[1^{2005}+\left(n-1\right)^{2005}\right]+\left[2^{2005}+\left(n-2\right)^{2005}\right]+...+\) \(\left[\left(n-1\right)^{2005}+1^{2005}\right]+2n^{2005}\)
Các biểu thức trong dấu ngoặc đều chia hết cho n nên:
\(2A⋮n\) (2)
Vì n và n + 1 là 2 số nguyên tố cùng nhau nên từ (1)và(2) \(\Rightarrow2A⋮n\left(n+1\right)=2B\)
Vậy \(A⋮B\)