K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

sorry lớp 6

24 tháng 5 2015

n3 + 11n = n- n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6. 
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm) 

11 tháng 8 2018

n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n

Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6

;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6

Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿

19 tháng 8 2019

a, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)

\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)

\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)

b, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)

\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)

\(M=6\cdot259+...+6^{96}\cdot259\)

\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)

Vậy \(M⋮259(đpcm)\)

12 tháng 8 2018

5^6+5^7+5^8

=5^6.(1+5+5^2)

=5^6.31 chia hết cho 31

7^6+7^5-7^4

=7^4.(7^2+7-1)

=7^4.55 chia hết cho 11

12 tháng 8 2018

BÀI 2:

a)  \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\)      \(⋮\)\(31\)

b)  \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)

c)  \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)

d) mk chỉnh đề

 \(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)

\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)

8 tháng 5 2019

12 + 22 + 33 

= 1 + 4 + 27

= 5 + 27

= 32

( 24 + 32 ) : 2

= ( 16 + 9 ) : 2

= 25 : 2

= 12,5

~ Hok tốt ~

9 tháng 5 2019

1^2+2^2+3^3

=1+4+27

=32

26 tháng 7 2017

mình bấm nhầm toán lớp 6 nha mọi người

\(A=1+4+4^2+4^3+4^4+4^5+4^6+4^7+4^8\)

\(A=1+4^{1+2+3+4+5+6+7+8}\)

\(A=1+4^{36}\)

khó quá cậu ơi

11 tháng 10 2020

3A =32+33+34+...+3100+3101

khi 2A = 3101 - 3

suy ra: A = (3101 - 3):2

b, A = 31+32+33+...+3100

A = (31+32)+(33+34)+...+(399+3100)

A = 3(1+3)+33(1+3)+...+399(1+3)

A= 12(1+32+33+...+398) nên A chia hết cho 4 và 12

c, mk chưa làm được

11 tháng 10 2020

Ta có A = 3 + 32 + 33 + ... + 399 + 3100

=> 3A = 32 + 33 + 34 + ... + 3100 + 3101

Khi đó 3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

=> 2A = 3101 - 3

=> A = \(\frac{3^{101}-3}{2}\)

b) Ta có A = 3 + 32 + 33 + 34 +... + 399 + 3100

= (3 + 32) + 32(3 + 32) + ... + 398(3 + 32)

= 12 + 32.12 + ... + 398.12

= 12(1 + 32 + ... + 398\(⋮\)12

Lại có A = 12(1 + 32 + ... + 398) = 3.4.(1 + 32 + ... + 398\(⋮\)4

c) Sửa đề A không chia hết cho 13

Ta có A =  3 + 32 + 33 + 34 + 35 + ... + 398 + 399 + 3100

=> A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 398 + 399 + 3100

=> A + 1 = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 398(1 + 3 + 32)

=> A + 1 = 13 + 33.13 + 33.13 + ... + 13.398

=> A + 1 = 13(1 + 33 + ... + 398)

=> A = 13(1 + 33 + ... + 398) - 1 

=> A không chia hết cho 13

10 tháng 11 2017

A = (2+2^2)+(2^3+2^4)+....+(2^59+2^60)

   = 2.3 + 2^3.3 + .... + 2^59 .3 = 3.(2+2^2+....+2^59) chia hết cho 3

A = (2+2^2+2^3)+(2^4+2^5+2^6)+.....+(2^58+2^59+2^60)

   = 2.7 + 2^4.7 + .... +2^58.7 = 7.(2+2^4+....+2^58) chia hết cho 7

Dễ thấy A chia hết cho 2 mà lại có A chia hết cho 3;7 ( cm trên )

=> A chia hết cho 2.3.7 = 42 ( vì 2;3;7 là 2 số nguyên tố cùng nhau ) 

15 tháng 11 2017

ko có cơ sở