K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

Ta có : \(\sqrt{2015a+bc}=\sqrt{\left(a+b+c\right)a+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có : \(\left(a+b\right)\left(a+c\right)=\left(\sqrt{a}^2+\sqrt{b}^2\right)\left(\sqrt{a}^2+\sqrt{c}^2\right)\ge\left(\sqrt{ac}+\sqrt{ab}\right)^2\)

\(\Rightarrow\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\frac{a}{a+\sqrt{2015a+bc}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}^2}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(\Rightarrow\Sigma\frac{a}{a+\sqrt{2015a+bc}}\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

21 tháng 8 2015

Bài này không đơn giản biến đổi tương đương được đâu em.

Theo giả thiết \(2015=a+b+c\to2015a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right).\)

Theo bất đẳng thức Bunhiacốpxki:   \(2015a+bc=\left(a+b\right)\left(c+a\right)\ge\left(\sqrt{ac}+\sqrt{bc}\right)^2.\) 

Vì vậy mà \(\frac{a}{a+\sqrt{2015a+bc}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}.\)

Tương tự ta có \(\frac{b}{b+\sqrt{2015b+ca}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}},\)  và  \(\frac{c}{c+\sqrt{2015c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}.\)  Cộng cả ba bất đẳng thức lại ta được ngay điều phải chứng minh.

 

 

6 tháng 7 2019

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)

\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si :

\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :

\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

25 tháng 9 2017

Đặt \(M=\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}\)

\(\Rightarrow M^2\le\left(1+1+1\right)\left(2015a+1+2015b+1+2015c+1\right)\) (bđt Cauchy Shwarz)

\(=6048\) \(\left(a+b+c=1\right)\)

\(\Rightarrow M\le\sqrt{6048}< \sqrt{6084}=78\) (đpcm)

26 tháng 12 2017

https://goo.gl/BjYiDy