Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết ta có: các bất đẳng thức trên tương đương với bất đẳng thức cần chứng minh
\(\frac{a}{4-c}+\frac{b}{4-a}+\frac{c}{4-b}\le1\)
\(\Rightarrow a\left(4-a\right)\left(4-b\right)+b\left(4-b\right)\left(4-c\right)\)\(+c\left(4-c\right)\left(4-a\right)\le\left(4-a\right)\left(4-b\right)\)\(\left(4-c\right)\)
\(\Rightarrow a^2b+b^2c+c^2a+abc\le4\)
Bất đẳng thức trên mang tính hoán vị giữa các bất đẳng thức nên không mất tính tổng quát ta giả swr c nằm giwuax a và b khi đó ta có:
\(a\left(a-c\right)\left(b-c\right)\le0\)
Thực hiện phép khai triển ta được: \(a^2b+c^2a\le a^2c+abc\)rồi cộng thêm \(\left(b^2c+abc\right)\)vào 2 vế ta được:
\(a^2b+b^2c+c^2a+abc\)\(\le a^2c+b^2c+2abc=c\left(a+b\right)^2\)
Áp dụng Bất Đẳng Thức AM-GM ta có:
\(c\left(a+b\right)^2=\frac{1}{2}2c\left(a+b\right)\left(a+b\right)\)\(\le\frac{\left(2c+a+b+a+b\right)^3}{2.27}=4\)nên Bất Đẳng Thức đã được chứng minh
Vậy \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)( đpcm )
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
áp dụng bất đẳng thức buinhia
\(\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)
\(\Leftrightarrow\left(\frac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{3}{4}\le a^2+b^2+c^2\)
Ta có : \(\left(a^2-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự : \(b^2+\frac{1}{4}\ge b\) và \(c^2+\frac{1}{4}\ge c\)
Cộng vế theo vế ta được : \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}\ge\frac{3}{2}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
Câu hỏi của Mashiro Rima - Toán lớp 8 - Học toán với OnlineMath
\(\text{Đ}k:a=b+c\)
\(min=2=1+1\)
\(\Rightarrow a=2,b=1,c=1\)
\(\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\Rightarrow\frac{2^3+1^3}{2^3+1^3}=\frac{2+1}{2+1}\Leftrightarrow1=1\)
\(\Rightarrow\frac{a^3+b^3}{a^3+c^3}=\frac{a+b}{a+c}\)
Xét VT ta có :
\(VT=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
\(=\frac{\left(a+b\right)\left[\left(b+c\right)^2-\left(b+c\right)b+b^2\right]}{\left(a+c\right)\left[\left(b+c\right)^2-\left(b+c\right)c+c^2\right]}\)
\(=\frac{\left(a+b\right)\left(b^2+2bc+c^2-b^2-bc+b^2\right)}{\left(a+c\right)\left(b^2+2bc+c^2-bc-c^2+c^2\right)}\)
\(=\frac{\left(a+b\right)\left(b^2+bc+c^2\right)}{\left(a+c\right)\left(b^2+bc+c^2\right)}\)
\(=\frac{a+b}{a+c}=VP\)
=> đpcm
1 .
Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)
Chia cả hai vế cho abc > 0
\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)
Vậy GTNN của C là 17 khi a =2; b =1; c = 1
2 .
Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên
\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)
\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tự ta có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)
\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)
Cộng vế theo vế (1), (2) và (3) ta được:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)
Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Chúc bạn học tốt !!!
Em có cách này nhưng không biết đúng không.Anh check lại ạ,em mới lớp 7 thôi!
Bổ sung đk a,b,c >= 0 (hay a,b,c không âm)
Áp dụng BĐT Cô si (AM-GM),ta có:
\(a^2+\frac{1}{4}\ge2\sqrt{\frac{a^2.1}{4}}=a\)
Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)
Cộng theo vế 3 BĐT trên suy ra \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
Hoặc là dùng BĐT Bunhiacopxki chắc cũng được ạ!
Ta có: \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)
Suy ra \(a^2+b^2+c^2\ge\frac{\left(\frac{9}{4}\right)}{3}=\frac{9}{12}=\frac{3}{4}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
Akai Haruma em có cách khác cô nè:)
\(\frac{a^3-b^3}{a^3+c^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\) (1)
Cần chứng minh \(a^2+ab+b^2=a^2-ac+c^2\Leftrightarrow ab+b^2=c^2-ac\)
\(\Leftrightarrow b\left(a+b\right)=c\left(c-a\right)\Leftrightarrow b\left(a+b\right)=\left(a+b\right)\left(a+b-a\right)\)
\(\Leftrightarrow b\left(a+b\right)=b\left(a+b\right)\) (đúng)
Do vậy \(\frac{a^3-b^3}{a^3+c^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a-b}{a+c}^{\left(đpcm\right)}\)
Lời giải:
Ta có:
\(a^3-b^3=(a-b)(a^2+ab+b^2)\)
\(a^3+c^3=(a+c)(a^2-ac+c^2)=(a+c)[a^2-a(a+b)+(a+b)^2]\) (thay $c=a+b$)
\(=(a+c)(a^2-a^2-ab+a^2+2ab+b^2)=(a+c)(a^2+ab+b^2)\)
Do đó:
\(\frac{a^3-b^3}{a^3+c^3}=\frac{(a-b)(a^2+ab+b^2)}{(a+c)(a^2+ab+b^2)}=\frac{a-b}{a+c}\)
Ta có đpcm.