Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
\(\frac{1}{1+2a+3ab+4abc}+\frac{2}{2+3b+4bc+bcd}+\frac{3}{3+4c+cd+2acd}+\frac{4}{4+d+2ad+3abd}\)
= \(\frac{1}{1+2a+3ab+4abc}+\frac{2a}{2a+3ab+4abc+abcd}+\frac{3ab}{3ab+4abc+abcd+2abacd}\)
\(+\frac{4abc}{4abc+abcd+2aabcd+3abcabd}\)
= \(\frac{1}{1+2a+3ab+4abc}+\frac{2a}{2a+3ab+4abc+1}+\frac{3ab}{3ab+4abc+1+2a}+\frac{4abc}{4abc+1+2a+3ab}\)
= \(\frac{1+2a+3ab+4abc}{1+2a+3ab+4abc}=1\)
Vì abcd=1 nên : a=1 ;b=1;c=1;d=1
thay số vào pt ta đc : \(\frac{1}{1+2\cdot1+3\cdot1\cdot1+4\cdot1\cdot1}\)+ \(\frac{1}{2+3\cdot1+4\cdot1\cdot1+1\cdot1\cdot1}\)+ \(\frac{1}{3+4\cdot1+1\cdot1+2\cdot1\cdot1\cdot1}\)+ \(\frac{1}{4+1+2\cdot1\cdot1+3\cdot1\cdot1\cdot1}\)
Tương đương : \(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)+\(\frac{1}{10}\)= \(\frac{4}{10}\)=\(\frac{2}{5}\)
Ta có: \(a^2-b^2=4c^2\)
\(\Rightarrow a^2-b^2-4c^2=0\)
Xét hiệu:
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)-\left(3a-5b\right)^2\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2-\left(3a-5b\right)^2\)
\(=25a^2-30ab+9b^2-64c^2-9a^2+30ab-25b^2\)
\(=16a^2-16b^2-64c^2\)
\(=16\left(a^2-b^2-4c^2\right)\)
\(=16.0\)
\(=0\)
\(\Rightarrow\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(3a-5b\right)^2\)
đpcm
Tham khảo nhé~
Một cách khác :))
Xét VT của biểu thức cần cm ta có :
( 5a - 3b + 8c )( 5a - 3b - 8c )
= [ ( 5a - 3b ) + 8c ][ ( 5a - 3b ) - 8c ]
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 ) < theo đề a2 - b2 = 4c2 >
= 252 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2 = VP
=> đpcm