Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Áp dụng BĐT Caushy Schwarz cho các cặp số dương (1,1) ở tử và (a,b) ở mẫu ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)
-Dấu "=" xảy ra khi \(a=b\).
-Hoặc có thể c/m bằng phép biến đổi tương đương:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)ab.\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}.\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b\)
Lời giải:
câu c)
Ta có: \(\frac{HD}{AD}=\frac{HD.BC}{AD.BC}=\frac{2S_{BHC}}{2S_{ABC}}=\frac{S_{HBC}}{S_{ABC}}\)
\(\frac{HE}{BE}=\frac{HE.AC}{BE.AC}=\frac{2S_{AHC}}{2S_{ABC}}=\frac{S_{AHC}}{S_{ABC}}\)
\(\frac{HF}{CF}=\frac{HF.AB}{CF.AB}=\frac{2S_{AHB}}{2S_{ABC}}=\frac{S_{AHB}}{S_{ABC}}\)
Cộng theo vế các đẳng thức vừa thu được:
\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}+S_{AHC}+S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Ta có đpcm.
Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :
\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)
\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)
\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)
Cộng 3 vế với nhau , ta có :
\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)
Ta có :
\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);
\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);
\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)
Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b
\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)
Vì \(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)
Tương tự :
\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)
Kết hợp (*) với (**)
=> ĐPCM
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
-Áp dụng BĐT Caushy Schwarz ta có:
\(\dfrac{1^2}{a+1}+\dfrac{1^2}{b+1}\ge\dfrac{\left(1+1\right)^2}{a+b+1+1}=\dfrac{4}{3}\)
-Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)
\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
<=> \(a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{ab+bc+ca}{1}=ab+bc+ca\) (thay abc = 1)
=> a + b + c - ab - bc - ca = 0
<=> 1 + a + b + c - ab - bc - ca - 1 = 0
<=> abc + a + b + c - ab - bc - ca - 1 = 0 (thay 1 = abc)
<=> (abc - ab) + (b - bc) + (a - ca) + (c - 1) = 0
<=> ab(c - 1) - b(c - 1) - a(c - 1) + (c - 1) = 0
<=> (c - 1)(ab - b - a + 1) = 0
<=> (c - 1)[b(a - 1) - (a - 1)] = 0
<=> (c - 1)(a - 1)(b - 1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\) (đpcm)
Ribi Nkok NgokNguyễn Thanh HằngPhạm Hoàng Giang Hoàng Thị Ngọc Anh Nguyễn Huy TúTuấn Anh Phan Nguyễn Toshiro KiyoshiAce LegonaQuang DuyVõ Đông Anh TuấnAkai Harumasoyeon_Tiểubàng giảiHoàng Lê Bảo NgọcTrần Việt LinhPhương An,..... Mọi người giúp mình nhé ! :)