Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt:
\(\left\{{}\begin{matrix}x=a-1\\y=b-2\\z=c-3\end{matrix}\right.\)
\(\Rightarrow x+y+z=3\) và \(x,y,z\ge0\) (*)
Biểu thứ P trở thành:
\(P=\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ (*) dễ thấy:
\(\left\{{}\begin{matrix}0\le x\le3\\0\le y\le3\\0\le z\le3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le x\le\sqrt{3x}\\0\le y\le\sqrt{3y}\\0\le z\le\sqrt{3z}\end{matrix}\right.\)
Do đó:
\(P\ge\dfrac{x+y+z}{\sqrt{3}}=\sqrt{3}\)
Dầu "=" xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)=\left(0;3;0\right)=\left(0;0;3\right)\)
\(P=bc\sqrt{a-1}+ca\sqrt{b-9}+ab\sqrt{c-16}\\ \Leftrightarrow\dfrac{P}{abc}=\dfrac{P}{1152}=\dfrac{\sqrt{a-1}}{a}+\dfrac{\sqrt{b-9}}{b}+\dfrac{\sqrt{c-16}}{c}\)
Áp dụng BĐT Cauchy:
\(2\sqrt{a-1}\le a-1+1=a\Leftrightarrow\dfrac{\sqrt{a-1}}{a}\le\dfrac{1}{2}\\ 2\sqrt{9\left(b-9\right)}\le9+b-9=b\Leftrightarrow\dfrac{\sqrt{b-9}}{b}\le\dfrac{1}{6}\\ 2\sqrt{16\left(c-16\right)}\le16+b-16=c\Leftrightarrow\dfrac{\sqrt{c-16}}{c}\le\dfrac{1}{8}\)
Cộng VTV \(\Leftrightarrow\dfrac{P}{1152}\le\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}=\dfrac{19}{24}\)
\(\Leftrightarrow P\le912\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-9=9\\c-16=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=18\\c=32\end{matrix}\right.\)
\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)
\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)
\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)
\(P^2\ge a+b+c-6=3\)
\(P\ge\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)
thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
- Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
- Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
- Xét x,y>1 thay vào giả thiết ta có
\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
a) đk: \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)
Ta có:
\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)
\(C=\frac{a-2\cdot\left(\sqrt{a}+4\right)-2\cdot\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(C=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(C=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)
b) Ta có: \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow\sqrt{a}=\sqrt{5}-2\)
Khi đó: \(C=\frac{\sqrt{5}-2}{\sqrt{5}-2+4}=\frac{\sqrt{5}-2}{\sqrt{5}+2}=\frac{\left(\sqrt{5}-2\right)^2}{1}=9-4\sqrt{5}\)
\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)
a) ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)
\(=\frac{a}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}+4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)
b) Với \(a=9-4\sqrt{5}\)( tmđk )
\(C=\frac{\sqrt{a}}{\sqrt{a}+4}=1-\frac{4}{\sqrt{a}+4}\)
\(C=1-\frac{4}{\sqrt{9-4\sqrt{5}}+4}\)
\(=1-\frac{4}{\sqrt{5-4\sqrt{5}+4}+4}\)
\(=1-\frac{4}{\sqrt{\left(\sqrt{5}-2\right)^2}+4}\)
\(=1-\frac{4}{\left|\sqrt{5}-2\right|+4}\)
\(=1-\frac{4}{\sqrt{5}-2+4}\)
\(=1-\frac{4}{\sqrt{5}+2}\)
\(=\frac{\sqrt{5}+2-4}{\sqrt{5}+2}\)
\(=\frac{\sqrt{5}-2}{\sqrt{5}+2}\)
\(=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{1}=9-4\sqrt{5}\)