Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các danh hai mà em yêu thích Chí Tài là người mà e yêu thik nhất
ông chết rồi tả
cái đéo gì
rút gọn
A=√x−1√x+1 −√x+3√x−2 −x+5x−√x−2
Đọc thêm\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{x-\sqrt{x}-2}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{x+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-2\sqrt{x}-\sqrt{x}+2-x-\sqrt{x}-3\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=-\frac{\sqrt{x}+6}{\sqrt{x}-2}\)
Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có
a+b-c>0; b+c-a>0; b+c-a>0
áp dụng BĐT \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\) ta có:
\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)=\(\ge\)\(\frac{4}{a+b-c+b+c-a}\)=\(\frac{4}{2b}\)=\(\frac{2}{b}\)(1)
\(\frac{1}{a+b-c}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{a+b-c+c+a-b}\)=\(\frac{4}{2a}\)=\(\frac{2}{a}\)(2)
\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{4}{b+c-a+c+a-b}\)=\(\frac{4}{2c}\)=\(\frac{2}{c}\)(3)
cộng vế với vế của(1);(2) và (3) ta có:
\(\frac{2}{a+b-c}\)+\(\frac{2}{b+c-a}\)+\(\frac{2}{c+a-b}\)\(\ge\)\(\frac{2}{b}\)+\(\frac{2}{a}\)+\(\frac{2}{c}\)
<=>\(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)
dấu = xảy ra khi a=b=c