K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)

<=>2018a.d<2018c.b

<=>2018a.d+c.d<2018c.b+c.d

<=>d(2018a+c)<c(2018b+d)

<=>đpcm

10 tháng 5 2018

Vì a/b < c/d (Với a,b,c,d thuộc N*)

=> ad<bc

=>  2018ad < 2018bc

=> 2018ad + cd < 2018bc +cd

=> (2018a + c).d < (2018b+d).c

=> 2018a +c / 2018b + d < c/d

Ta có:a/b<c/d<=>a.d<b.c

<=>2018a.d<2018b.c

<=>2018a.d+c.d<2018b.c+d.c

<=>d(2018a+c)<c(2018b+d)

<=>2018a+c/2018b+d<c/d(dpcm)

Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)

\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)

\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)

27 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\)

\(ad< bc\)

\(2018ad< 2018bc\)

\(2018ad+cd< 2018bc+cd\)

\(\left(2018a+c\right)d< \left(2018b+d\right)c\)

\(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)

Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)

3 tháng 5 2018

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 10 2018

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you