K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

(cách này ngắn hơn nè pham trung thanh) Vì a;b;c vai trò như nhau

Giả sử \(c\le a;b\Rightarrow P\le\frac{1}{4-c^2}+\frac{1}{4-c^2}+\frac{1}{4-c^2}=\frac{3}{4-c^2}\left(1\right)\)

\(c\le a;b\Rightarrow c^4\le a^4;b^4\)

Mà \(a^4+b^4+c^4=3\) 

\(\Rightarrow3\ge c^4+c^4+c^4=3c^4\)

\(\Rightarrow c^4\le1\Leftrightarrow c^2\le1\) 

\(\Rightarrow4-c^2\ge3\Rightarrow\frac{3}{4-c^2}\le1\left(2\right)\)

từ (1) và (2) \(\Rightarrow P\le1\)

Dấu "=" xảy ra khi a=b=c=1

2 tháng 1 2018

Ta có 2A=\(\frac{2}{4-ab}+\frac{2}{4-bc}+\frac{2}{4-ca}=1+1+1-\frac{2-ab}{4-ab}-\frac{2-bc}{4-bc}-\frac{2-ca}{4-ca}\)

   =3-(..)

Mà \(\frac{2-ab}{4-ab}=\frac{\left(2-ab\right)\left(2+ab\right)}{\left(2+ab\right)\left(4-ab\right)}=\frac{4-a^2b^2}{8+2ab-a^2b^2}\)

Mà \(3=a^4+b^4+c^4\ge a^4+b^4\ge2a^2b^2\Rightarrow a^2b^2\le\frac{a^4+b^4}{2}\)

Mà \(8+2ab-a^2b^2=9-\left(ab-1\right)^1\le9\)

=>\(\frac{2-ab}{4-ab}\ge\frac{4-\frac{a^4+b^4}{2}}{9}=\frac{4}{9}-\frac{a^4+b^4}{18}\)

tương tự thì ..., rồi cộng lại, ta có 

\(\frac{2-ab}{4-ab}+\frac{2-bc}{4-bc}+\frac{2-ca}{4-ca}\ge\frac{4}{3}-\frac{a^4+b^4+c^4}{9}=\frac{4}{3}-\frac{1}{3}=1\)

=>\(2A\le3-1=2\Rightarrow A\le1\)

^_^

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

25 tháng 7 2020

Dễ thấy theo AM - GM ta có:

\(P\ge3\sqrt[3]{\sqrt{\frac{a+b}{c+ab}\cdot\sqrt{\frac{b+c}{a+bc}}\cdot\sqrt{\frac{c+a}{b+ca}}}}\)

Ta cần chứng minh \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ca\right)\)

Mặt khác theo AM - GM:

\(\left(c+ab\right)\left(a+bc\right)\le\frac{\left(c+ab+a+bc\right)^2}{4}=\frac{\left(b+1\right)^2\left(a+c\right)^2}{4}\)

Tương tự thì:

\(\left(c+ab\right)\left(a+bc\right)\left(b+ca\right)\le\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\)

Ta cần chứng minh:\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)

Áp dụng tiếp AM - GM:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\frac{\left(a+1+b+1+c+1\right)^3}{27}=8\)

Vậy ta có đpcm

Chuyên Phan năm nay :))