Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(abc=ab+bc+ca\Rightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Lại có:
\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge\frac{3}{b},\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge\frac{3}{c},\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge\frac{3}{a}\)
\(\Rightarrow P+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Đặt: \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}=t\)
Dễ chứng minh \(t\ge3\)
Ta viết lại biểu thức: \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=t+\frac{1}{t}\)
\(=\frac{1}{9}t+\frac{1}{t}+\frac{8}{9}t\ge2\sqrt{\frac{1}{9}}+\frac{8}{9}t\ge\frac{2}{3}+\frac{24}{9}=\frac{10}{3}\)
\("="\Leftrightarrow t=3\Leftrightarrow a=b=c\)
#)Trả lời :
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Tách VT = A + B và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu ''='' xảy ra khi a = b = c = 1
Tham khảo nhé ^^
Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)
\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)
cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=2
Vậy minA=3/2 khi a=b=c=2
Áp dụng bđt cô si ta có:
\(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{a+b+ab}{b+1}\ge2a\)
\(\Leftrightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge2a-\frac{a\left(b+1\right)+b}{b+1}=2a-a-\frac{b}{b+1}=a-\frac{b}{b+1}\)
Mặt khác:
\(\frac{b}{b+1}\le\frac{b+1}{4}\)
\(\Rightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge a-\left(\frac{b+1}{4}\right)\)
Tương tự:
\(\frac{b^2\left(c+1\right)}{b+c+bc}\ge b-\left(\frac{c+1}{4}\right)\)
\(\frac{c^2\left(a+1\right)}{c+a+ca}\ge c-\left(\frac{a+1}{4}\right)\)
\(\Rightarrow P\ge\left(a+b+c\right)-\left(\frac{a+1}{4}+\frac{b+1}{4}+\frac{c+1}{4}\right)=\left(a+b+c\right)-\left(\frac{\left(a+b+c\right)+3}{4}\right)=3-\left(\frac{3+3}{4}\right)=\frac{3}{2}\)Vậy GTNN của P=3/2
(Thấy sai sai chỗ nào đó mà ko biết chỗ nào, ae thấy thì chỉ nhá )
đoạn bạn dùng cô si ấy hình như bị sai do nếu a=b=c=1 thì sao lại a^2(b+1)/(a+b+ab)=(a+b+ab)/(b+1)
Q=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ac}+\frac{7}{ab+bc+ac}\)
ap dung bdt cauchy-schwarz dang engel ta co
\(Q\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+ab+bc+ac+ab+ac+bc}+\frac{7}{ab+ac+bc}\)
=\(\frac{3^2}{\left(a+b+c\right)^2}+\frac{7}{ab+bc+ac}\) \(\ge3^2+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+21=30\)
dau = xay ra khi a=b=c=1/3
\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)
\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a+b+c\right)^2}{ab+bc+ca}\)
\(=\left[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\right]+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)
\(\ge2+8+18=28\)
Đẳng thức xảy ra khi \(a=b=c\)
\(A=\frac{10a^2+10b^2+c^2}{ab+bc+ca}=\frac{8a^2+\frac{c^2}{2}+8b^2+\frac{c^2}{2}+2a^2+2b^2}{ab+bc+ca}\)
\(\ge\frac{2\sqrt{8a^2.\frac{c^2}{2}}+2\sqrt{8b^2.\frac{c^2}{2}}+4\sqrt{a^2b^2}}{ab+bc+ca}=\frac{4\left(ab+bc+ca\right)}{ab+bc+ca}=4\)
Dấu \(=\)khi \(a=b=\frac{c}{4}\).
Bạn tham khảo nhé: áp dụng bđt côsi cho 2 số dương
2a2+2b2>=4ab;8a2+c2/2>=4ac;8b2+c2/2>=4ac nên A>=4
dấu bằng xảy ra khi 4a=4b=c