Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=16\left(a-\frac{1}{2}\right)^2+2\left(b-1\right)^2+\left(\frac{3}{a}+12a\right)+\left(\frac{2}{b}+2b\right)+2\left(2a+b\right)-6\ge14\)
"=" \(\Leftrightarrow\)\(a=\frac{1}{2};b=1\)
Ta sẽ sử dụng phương pháp Cauchy ngược dấu để CM bài toán này
Xét \(\frac{a^2}{a+2b^3}=\frac{a\left(a+2b^3\right)-2ab^3}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\)
\(=a-\frac{2ab^3}{a+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}\cdot\frac{ab}{\sqrt[3]{a}}\)
\(=a-\frac{2}{3}\cdot\left(b\sqrt[3]{a^2}\right)=a-\frac{2}{3}\cdot b\cdot\sqrt[3]{a\cdot a\cdot1}\)
\(\ge a-\frac{2}{9}\cdot b\cdot\left(a+a+1\right)=a-\frac{2b}{9}\left(2a+1\right)=a-\frac{2}{9}\left(2ab+b\right)\)
Tương tự ta biến đổi với các phân thức còn lại:
\(\frac{b^2}{b+2c^3}\ge b-\frac{2}{9}\left(2bc+c\right)\) và \(\frac{c^2}{c+2a^3}=c-\frac{2}{9}\left(2ca+a\right)\)
Cộng vế 3 BĐT trên lại ta được: \(P\ge\left(a+b+c\right)-\frac{2}{9}\left[2\left(ab+bc+ca\right)+\left(a+b+c\right)\right]\)
\(\ge3-\frac{2}{9}\left[2\cdot\frac{\left(a+b+c\right)^2}{3}+3\right]=3-\frac{2}{9}\left(2\cdot3+3\right)=1\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Vậy Min(P) = 1 khi a = b = c = 1
1/ Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel :
\(A\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}=\frac{3}{3}=1\)
Dấu "=" xảy ra <=> a=b=c=1
\(Q=a+b+\frac{a^2+b^2}{a}+\frac{a^2+b^2}{b}=a+b+\frac{8}{a}+\frac{8}{b}\).
Ta dự đoán biểu thức đạt min tại \(a=b=2\) nghĩa là \(a=\frac{4}{a},b=\frac{4}{b}\) nên ta tách:
\(Q=\left(a+\frac{4}{a}\right)+\left(b+\frac{4}{b}\right)+4\left(\frac{1}{a}+\frac{1}{b}\right)\).
Áp dụng BĐT Cauchy và BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có \(Q\ge8+\frac{16}{a+b}\).
Ta lại có \(a+b\le\sqrt{2\left(a^2+b^2\right)}=4\) nên \(Q\ge12\)