K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}>\frac{1}{2}\)

\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}>\frac{1}{8}\)( đpcm )

Đẳng thức xảy ra <=> a = b = 1/2 

29 tháng 7 2020

Ta có : a + b > 1 > 0 (1)

Bình phương hai vế : (a + b)2 > 1 => a2 + 2ab + b2 > 1 (2)

Mặt khác (a - b)2 \(\ge\)0 => a2 - 2ab + b2 \(\ge\)0       (3)

Cộng từng vế của (2) hoặc (3) : \(2\left(a^2+b^2\right)>1\)=> a2 + b2 \(\ge\frac{1}{2}\)(4)

Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\frac{1}{4}\)(5)

Mặt khác \(\left(a^2-b^2\right)^2\ge0\)=> a4 + 2a2b2 + b4 \(\ge\)0 (6)

Cộng từng vế (5) và (6) : \(2\left(a^4+b^4\right)>\frac{1}{4}\)=> \(a^4+b^4>\frac{1}{8}\)

11 tháng 5 2017

Bài 2 :

Ta có :

\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )

\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\)  ( 3 )

Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được : 

\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)

Theo đề bài thì  \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)

Thấy đúng thì tk nka !111

12 tháng 5 2017

Bài 3:

ta có :    \(a^4+b^4\ge2a^2b^2\)

Cộng    \(a^4+b^4\)  vào 2 vế ta được:  

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

                  \(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)

mà theo bài thì   \(a+b>1\)\(\Rightarrow dpcm\)

TK MK NKA !!!

13 tháng 9 2019

Ta có: \(\left(a-b\right)^2\ge0\forall a;b\\ \Rightarrow\left(a+b\right)^2-4ab\ge0\\ \Rightarrow\left(a+b\right)^2\ge4ab\\ \Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\\ \Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

5 tháng 4 2018

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=>\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

<=>\(\left(a+b\right)^2\ge4ab\)

<=>\(a^2+2ab+b^2-4ab\ge0\)

<=>\(a^2-2ab+b^2\ge0\)

<=>\(\left(a-b\right)^2\ge0\)

Luôn đúng với mọi x,y.

Vậy 1/a+1/b>=4/(a+b). Dấu "=" xảy ra<=>x=y

4 tháng 1 2018

Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

dấu = xảy ra <=> x=y

Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)

dấu = xảy ra <=>a=b=1/2

4 tháng 1 2018

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)

\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)

\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

24 tháng 4 2019

a) ta có a>b (cộng 2 và 2 vế )

<=>  a+2 > b+2  (1)
ta có 2>-3 (cộng b vào 2 vế )

b+2>b-3  (2)

từ (1) và (2) => a+2 > b-3

7 tháng 12 2014

a2 + b2 \(\ge\frac{1}{2}\)

Lại có \(\frac{a^2+b^2}{2}\) \(\ge\left(\frac{a^2+b^2}{2}\right)^2=\frac{1}{16}\). Suy ra đpcm

1 tháng 4 2017

Bài 1: \(a+b\ge1\). cm \(a^4+b^4\ge\dfrac{1}{8}\)

ta có : \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)(BĐT bunyakovsky)

Áp dụng BĐt bunyakovsky 1 lần nữa:

\(a^4+b^4\ge\dfrac{1}{2}\left(a^2+b^2\right)^2\ge\dfrac{1}{2}.\dfrac{1}{4}=\dfrac{1}{8}\)

dấu = xảy ra khi \(a=b=\dfrac{1}{2}\)

Bài 2:

Áp dụng BĐT bunyakovsky dạng đa thức và phân thức:

\(\left(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\right)\left(a+b+c\right)\ge\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2\ge\left[\dfrac{\left(a+b+c\right)^2}{a+b+c}\right]^2=\left(a+b+c\right)^2\)

do đó \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\)

dấu = xảy ra khi a=b=c

1 tháng 4 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)

Lại theo Cauchy-Schwarz lần nữa:

\(\left[\left(1^2\right)^2+\left(1^2\right)^2\right]\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2+b^2\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\dfrac{1}{4}\Leftrightarrow a^4+b^4\ge\dfrac{1}{8}\)

Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)

Bài 2:

Trước tiên ta chứng minh \(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)

Ta chứng minh bổ đề: \(\dfrac{a^3}{b^2}\ge\dfrac{a^2}{b}+a-b\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Viết các BĐT tương tự và cộng lại

\(\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge\dfrac{a^2}{b}+a-b+\dfrac{b^2}{c}+b-c+\dfrac{c^2}{a}+c-a=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\left(1\right)\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(2\right)\)

Từ \((1);(2)\) ta thu được ĐPCM