K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(\text{Ta có : }x+y=1\Rightarrow\left\{{}\begin{matrix}1-y=x\\y-1=-x\end{matrix}\right.\left(1\right)\\ \)

\(A=x^2+xy-x+xy^2+y^3-y^2+xy\)

\(A=\left(x^2+xy\right)-\left(x-xy\right)+\left(y^3-y^2\right)+xy^2\)

\(A=x\left(x+y\right)-x\left(1-y\right)+y^2\left(y-1\right)+xy^2\)

Thay \(\left(1\right)\) vào suy ra :

\(A=x\left(1\right)-x\left(x\right)+y^2\left(-x\right)+xy^2\)

\(A=x-x^2+\left(-xy^2\right)+xy^2\)

\(A=x-x^2-xy^2+xy^2\)

\(A=x-x^2-\left(xy^2-xy^2\right)\)

\(A=x-x^2\)

\(x^2\ge0\)

\(\Rightarrow A=x-x^2\le x\)

Dấu \("="\) xảy ra khi : \(x^2=0\Rightarrow x=0\)

\(\Rightarrow A=x-x^2\le0\)

Vậy \(A_{\left(max\right)}=0\) khi \(x=0\)

8 tháng 2 2017

A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)

=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)

=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)

Ta nhận thấy các số trong ngoặc đều dương.

=> Để A>0 thì y>0

Vậy để A>0 thì y>0 và với mọi x

Dễ nhưng ko bao giờ nói.

26 tháng 1 2016

dua tien day anh giup cho

28 tháng 8 2017

a) A+(x2+y2)=5x2+3y2−xy

⇒A=(5x2+3y2−xy)−(x2+y2)

=(5−1)x2+(3−1)y2−xy

=4x2+2y2−xy

b) A−(xy+x2−y2)=x2+y2

⇒A=(x2+y2)+(xy+x2-y2)

=(1+1)x2+(1−1)y2+xy

=2x2+xy


29 tháng 5 2020

a) A+(x2+y2)=5x2+3y2−xy

⇒A=(5x2+3y2−xy)−(x2+y2)

=(5−1)x2+(3−1)y2−xy

=4x2+2y2−xy

b) A−(xy+x2−y2)=x2+y2

⇒A=(x2+y2)+(xy+x2-y2)

=(1+1)x2+(1−1)y2+xy

=2x2+xy