Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Cách dựng:
- Dựng hai tia chung gốc ox và Oy
phân biệt không đối nhau.
- Trên Ox dựng đoạn OM = AB = 3cm
và dựng đoạn MN = CD = 5cm sao cho M nằm giữa O và N
- Trên tia Oy dựng đoạn OP = EF = 2cm.
- Dựng đường thẳng PM.
- Từ N dựng đường thẳng song song với PM cắt tia Oy tại Q.
Đoạn thẳng PQ = a cần dựng..
* Chứng minh:
Theo cách dựng, ta có: PM // NQ.
Trong ΔONQ ta có: PM // NQ
Bài 16:
Nếu giống ở bài thì phải là \(AB=3cm,CD=5cm\) nhé.
Cách dựng:
- Dựng hai tia chung gốc \(Ox\) và \(Oy\) phân biệt không đối nhau.
- Trên \(Ox\) dựng đoạn \(OM=AB=3cm\) và dựng đoạn \(MN=CD=5cm\) sao cho M nằm giữa O và N.
- Trên tia \(Oy\) dựng đoạn \(OP=EF=2cm.\)
- Dựng đường thẳng \(PM.\)
- Từ N dựng đường thẳng song song với \(PM\) cắt tia \(Oy\) tại Q. Ta được đoạn thẳng \(PQ=a\) cần dựng.
Chứng minh:
+ Xét \(\Delta ONQ\) có:
\(PM\) // \(NQ\) (do cách dựng).
=> \(\frac{OM}{MN}=\frac{OP}{PQ}\) (định lí Ta - lét).
=> \(\frac{AB}{CD}=\frac{EF}{a}\)
=> \(\frac{3}{5}=\frac{2}{a}\)
=> \(a=2:\frac{3}{5}\)
=> \(a=\frac{10}{3}\left(cm\right).\)
Vậy \(a=\frac{10}{3}\left(cm\right).\)
Chúc bạn học tốt!
a: CA/CB=3/5
=>CA=3/5CB
AB=AC+CB=8/5CB
\(\dfrac{AB}{AC}=\dfrac{8\cdot CB}{5}:\dfrac{3\cdot CB}{5}=\dfrac{8}{5}\cdot\dfrac{5}{3}=\dfrac{8}{3}\)
b: DA/DB=3/5
=>DA=3/5DB
=>AB=2/5DB
=>DB=24:2/5=60(cm)
=>DA=36cm
CA=3/5CB
CA+CB=AB
=>3/5CB+CB=AB
=>AB=8/5CB
=>CB=5/8AB
=>CA=3/8AB=3/8*24=9cm
Ta có: \(\frac{AB}{CD}=\frac{2}{3}\Rightarrow\frac{AB}{2}=\frac{CD}{3}\Leftrightarrow\frac{AB}{2.4}=\frac{CD}{3.4}\)
Và: \(\frac{CD}{EF}=\frac{4}{6}\Rightarrow\frac{CD}{4}=\frac{EF}{6}\Leftrightarrow\frac{CD}{4.3}=\frac{FE}{6.3}\)
\(\Rightarrow\frac{AB}{8}=\frac{CD}{12}=\frac{EF}{18}=\frac{AB+CD+EF}{8+12+18}=\frac{70}{38}=\frac{35}{19}\)
\(\Rightarrow\frac{AB}{8}=\frac{35}{19}\Rightarrow AB=\frac{35.8}{19}=\frac{280}{19}cm\)
\(\Rightarrow\frac{CD}{12}=\frac{35}{19}\Rightarrow CD=\frac{35.12}{19}=\frac{420}{19}cm\)
\(\Rightarrow\frac{FE}{18}=\frac{15}{19}\Rightarrow EF=\frac{35.18}{19}=\frac{630}{19}cm\)
Vậy ........................
a: Xét ΔDAB có
I là trung điểm của BD
E là trung điểm của AD
DO đó: IE là đường trung bình
=>IE//AB
Xét ΔBDC có
I là trung điểm của BD
F là trung điểm của BC
Do đó: IF là đường trung bình
=>IF//DC
b: \(\dfrac{AB+CD}{2}=EI+FI>=EF\)