Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Thay m = 2 vào phương trình (1) ta có.
2x2 + 3x + 1 = 0
Có ( a - b + c = 2 - 3 + 1 = 0)
=> Phương trình (1) có nghiệm x1 = -1 ; x2 = - 1/2
2. Phương trình (1) có ▲ = (2m -1)2 - 8(m -1)
= 4m2 - 12m + 9 = (2m - 3)2 \(\ge\) 0 với mọi m.
=> Phương trình (1) luôn có hai nghiệm x1; x2 với mọi giá trị của m.
+ Theo hệ thức Vi ét ta có
\(\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}\)
+ Theo điều kiện đề bài: 4x12 + 4x22 + 2x1x2 = 1
<=> 4(x1 + x2)2 - 6 x1x2 = 1
<=> ( 1 - 2m)2 - 3m + 3 = 1
<=> 4m2 - 7m + 3 = 0
+ Có a + b + c = 0 => m1 = 1; m2 = 3/4
Vậy với m = 1 hoặc m = 3/4 thì phương trình (1) có hai nghiệm x1; x2 thoả mãn:
4x12 + 4x22 + 2x1x2 = 1
a, \(5x+5=5x+5\)
\(0x=0\)
\(\RightarrowĐPCM\)
b, \(x^2+8x+16=x^2+8x+16\)
\(0x=0\)
\(\RightarrowĐPCM\)
a, \(5\left(x+1\right)=5x+5\)
\(\Leftrightarrow5x+5=5x+5\)
Vậy phương trình đúng với mọi nghiệm \(x\in R\)
b,\(\left(x+4\right)^2=x^2+8x+16\)
\(\Leftrightarrow x^2+8x+16=x^2+8x+16\)
Vậy phương trình đúng với mọi nghiệm \(x\in R\)
Ta có: 5 + 5x < 5(x + 2)
⇔ 5 + 5x < 5x + 10
⇔ 5x – 5x < 10 – 5
⇔ 0x < 5
Bất kì giá trị nào của x cũng thỏa mãn vế trái nhỏ hơn vế phải.
Vậy tập nghiệm của bất phương trình là tập số thực R.
a) Để cho \(x=-3\) là nghiệm của phương trình \(f\left(x,y\right)=0\) điều kiện là :
\(\left(-6-3y+7\right)\left(-9+2y-1\right)=0\)
a) Ta có: 2² = 4 > 0 và (-3)² = 9 > 0 => x = 2; x = -3 là nghiệm của bất phương trình x² > 0
b) Ta có Với mọi x ≠ 0 thì x² > 0 và khi x = 0 thì 0² = 0 nên mọi giá trị của ẩn x không là nghiệm của bất phương trình x² > 0. tập nghiệm của bất phương trình x² > 0 là S = {x ∈ R/x ≠ 0}
= R\{0}
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow-2x+2mx-2=0\)
\(\Leftrightarrow2\left(mx-x-1\right)=0\)
\(\Leftrightarrow mx-x-1=0\)
\(\Leftrightarrow x\left(m-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{m-1}\)
\(\Rightarrow x>0\Leftrightarrow\frac{1}{m-1}>0\Leftrightarrow m-1>0\Leftrightarrow m>1\)
Vậy \(m>1\)thì \(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)có nghiệm không âm