Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$
$=2(2x+1)$
b)
$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$
c)
$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$
$=-9x+4$
d)
$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$
$=6x^2+12x+9$
e)
$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$
$=x^3-x^2-3x+11$
f)
$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$
$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
\(B=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\\ =8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\\ =8x^3-8x^3-12x^2+12x^2+18x-18x+27+2\\ =29\)
Vậy biểu thức \(B\) không phụ thuộc vào biến \(x\left(dpcm\right)\)
Bài 1:
a) \(6x\left(3x+15\right)-2x\left(9x-2\right)=17\) (1)
\(\Leftrightarrow18x^2+90x-18x^2+4x=17\)
\(\Leftrightarrow94x=17\)
\(\Leftrightarrow x=\dfrac{17}{94}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{17}{94}\right\}\)
b) \(\left(15x-2x\right)\left(4x+1\right)-\left(13x-4x\right)\left(2x-3\right)-\left(x-1\right)\left(x+2\right)+x+2=52\)
\(\Leftrightarrow\left(60x^2+15x-8x^2-2x\right)-\left(26x^2-39x-8x^2+12x\right)-\left(x^2+2x-x-2\right)+x+2=52\)
\(\Leftrightarrow60x^2+15x-8x^2-2x-26x^2+39x+8x^2-12x-x^2-2x+x+2+x+2=52\)
\(\Leftrightarrow33x^2+40x+4=52\)
\(\Leftrightarrow33x^2+40x=48\)
...
Bài 1 có ng làm rồi nên mình không làm nx nhé.
2) a) Rút gọn
P=\(3x\left(4x+1\right)+5x^2-4x\left(3x+9\right)+x\left(5x-5x^2\right)\)
P= \(12x^2+3x+5x^3-12x^3-36x+5x^2-5x^3\)
P= \(-33x\)
b) |x| = 2
\(\Rightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Với x = 2 \(\Rightarrow\) P = -33 . 2 = -66
Với x = -2 \(\Rightarrow\) P = -33 . (-2) = 66
c) Để P = 2017 \(\Rightarrow\) -33x = 2017 \(\Rightarrow\) x = \(-\dfrac{2017}{33}\)
Bài 3: Giải
f(x) = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
f(x) = \(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
f(x) = \(\left(x^2+5x\right)^2-6^2\) ( Hằng đẳng thức số 3 )
f(x) = \(\left(x^2+5x\right)^2-36\ge-36\) với mọi x
Vậy \(Min_{f\left(x\right)}\) = -36 khi x = 0 hoặc x = -5
a: \(=2x\left(4x^2-4x+1\right)-3x^2-9x-4x^2-4x\)
\(=8x^3-8x^2+2x-7x^2-13x\)
\(=8x^3-15x^2-11x\)
c: \(=5x^3-5x^2-5x^3+5x^2-15=-15\)
d: \(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-\left(2x-1\right)\left(x^2-9\right)\)
\(=-16x^3-47x^2-26x+25-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)