K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

(x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) + x2

= (x2-ax-bx+ab) + (x2-bx-cx+bc) + (x2-cx-ax+ac) + x2

= 4x2 - 2ax - 2bx + ab + bc + ac

Thay a+b+c = 2x, ta được:

M = 4x2 - 2x(a+b+c) + ab + bc + ac

M = 4x2 - 2x.2x + ab + bc + ac

M = ab + bc + ac

Vậy => đcpcm

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

15 tháng 5 2018

Bài 1 :

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Vậy \(MIN_A=-36\) . Dấu \("="\) xảy ra khi \(x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Bài 2 :

a ) \(x+y=5\Rightarrow\left(x+y\right)^2=25\)

\(\Leftrightarrow x^2+2xy+y^2=25\)

\(\Leftrightarrow x^2+y^2=25-2.6=13\)

15 tháng 5 2018

\(B=x^2-4x+1\)

\(B=x^2-4x+4-3\)

\(B=\left(x-2\right)^2-3\ge-3\)

"="<=>x=2

\(C=\dfrac{-4}{x^2-4x+10}\)

Ta có:\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

\(\Rightarrow\dfrac{-4}{x^2-4x+10}\ge-\dfrac{4}{6}=-\dfrac{2}{3}\)

"="<=>x=2

D\(\ge-\dfrac{8}{3}\)<=>x=0,5(tương tự)

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

Bài 1:

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3\)

\(A=x^3-y^3+2y^3\)

\(A=x^3+y^3\)

Thay \(x=\dfrac{2}{3},y=\dfrac{1}{3}\) vào A, ta có:

\(A=\left(\dfrac{2}{3}\right)^3+\left(\dfrac{1}{3}\right)^3=\dfrac{8}{27}+\dfrac{1}{27}=\dfrac{9}{27}=\dfrac{1}{3}\)

Bài 2: 

Ta có: \(\left(x+1\right)\left(x+3\right)-x\left(x+2\right)=7\)

\(\Leftrightarrow x^2+4x+3-x^2-2x=7\)

=>2x+3=7

=>2x=4

hay x=2

Bài 3:

\(A=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

15 tháng 6 2017

Bài 2:

a, \(A=3x\left(2x-5y\right)+\left(3x-y\right)\left(-2x\right)-\dfrac{1}{2}\left(2-26xy\right)\)

\(=6x^2-15xy-6x^2+2xy-1+13xy\)

\(=-1\)

\(\Rightarrowđpcm\)

b, \(B=\left(2x-3\right)\left(4x+1\right)-4\left(x-1\right)\left(2x-1\right)-2x+5\)

\(=8x^2+2x-12x-3-4\left(2x^2-x-2x+1\right)-2x+5\)

\(=8x^2-10x+2-8x^2+4x+8x-4-2x\)

\(=2-4=-2\)

\(\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

9 tháng 8 2017

1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)

\(\Rightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=45\)

\(\Rightarrow x^2+y^2-2xy=9\)

\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)

\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)

Vậy...

Bài 1: Tính kết quả đúng ( không sai số) của tích sau: \(Q=3333355555.3333377777\) Bài 2: Giải phương trình: a) \(\dfrac{20}{2+\dfrac{1}{3+\dfrac{1}{4+\dfrac{1}{x}}}}=\dfrac{2003}{2+\dfrac{3}{4+\dfrac{5}{6+\dfrac{7}{8}}}}\) Tìm các số tự nhiên a,b biết rằng: b) \(\dfrac{199}{2005}=\dfrac{1}{10+\dfrac{1}{13+\dfrac{1}{3+\dfrac{1}{a+\dfrac{1}{b}}}}}\) Bài 3: Cho \(f\left(x\right)=x^3+bx^2+cx+d\), biết rằng f(1)=3, f(2)=8, f(3)=15. Biết f(x) chia...
Đọc tiếp

Bài 1:

Tính kết quả đúng ( không sai số) của tích sau:

\(Q=3333355555.3333377777\)

Bài 2:

Giải phương trình:

a)

\(\dfrac{20}{2+\dfrac{1}{3+\dfrac{1}{4+\dfrac{1}{x}}}}=\dfrac{2003}{2+\dfrac{3}{4+\dfrac{5}{6+\dfrac{7}{8}}}}\)

Tìm các số tự nhiên a,b biết rằng:

b)

\(\dfrac{199}{2005}=\dfrac{1}{10+\dfrac{1}{13+\dfrac{1}{3+\dfrac{1}{a+\dfrac{1}{b}}}}}\)

Bài 3:

Cho \(f\left(x\right)=x^3+bx^2+cx+d\), biết rằng f(1)=3, f(2)=8, f(3)=15. Biết f(x) chia cho (x+3) dư 1; chia cho (x-4) dư 8; chia cho (x+3)(x+4) được thương là x-3 và còn dư. Hãy xác định b,c,d.

Bài 4:

Hãy xác định hệ số a,b,c,d và tính giá trị của đa thức.

\(Q\left(x\right)=x^5+ax^4-bx^3+cx^2+dx-2007\)

Tại các giá trị của x=1,15;1,25;1,35;1,45

Biết rằng khi x nhận được các giá trị lần lượt 1,2,3,4 thì Q(x) có các giá trị tương ứng là 9,21,33,45.

Các bạn giúp mình nhé! Giải chi tiết vào để mình xem dễ hiểu nha, vì mình chậm tiêu lắm!:)) Cảm ơn các bạn!


3
22 tháng 8 2018

Bài 1 : Ta có :

\(Q=3333355555.3333377777\)

\(=\left(33333.10^5+55555\right)\left(33333.10^5+77777\right)\)

\(=33333^2.10^{10}+33333.77777.10^5+55555.33333.10^5+55555.77777\)

\(=11110888890000000000+259254074100000+185181481500000+4520901235\)

1 1 1 1 0 8 8 8 8 9 0 0 0 0 0 0 0 0 0 0
2 5 9 2 5 4 0 7 4 1 0 0 0 0 0
1 8 5 1 8 1 4 8 1 5 0 0 0 0 0
4 3 2 0 9 0 1 2 3 5

Cộng xuống ta được : \(Q=11111333329876501235\)

22 tháng 8 2018

Bài 3 : Ta có : \(f\left(x\right)=\left(x+3\right)\left(x+4\right)\left(x-3\right)+ax+b\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}-3a+b=1\\4a+b=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=\left(x+3\right)\left(x+4\right)\left(x-3\right)+x+4\)

\(=\left(x^2-9\right)\left(x+4\right)+x+4\)

\(=x^3+4x^2-9x-36+x+4\)

\(=x^3+4x^2-8x-32\)

Vậy \(b=4;c=-8;d=-32\)