Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b) Ta có: \(P=\dfrac{x^3+2x^2-5x-6}{x^2+x-6}\)
\(=\dfrac{x^3+3x^2-x^2-3x-2x-6}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2\left(x+3\right)-x\left(x+3\right)-2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x+3\right)\left(x^2-x-2\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)}{x-2}=x+1\)
Với mọi x nguyên thỏa ĐKXĐ, ta luôn có: x+1 là số nguyên
hay P là số nguyên(đpcm)
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)
a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)
b) Theo đề bài ta có:
\(2x^2+x=0\)
\(\Rightarrow x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)
Thay x = 0 (thỏa mãn điều kiện) vào P ta có:
\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)
Vậy khi x = 0 thì P = -1
c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)
Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)
Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)
\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)
Ta có bảng giá trị:
2x | 1 | -1 |
x | \(\frac{1}{2}\) | \(-\frac{1}{2}\) |
Loại | Loại |
Vậy không có x thỏa mãn P \(\inℤ\)
d) Với x \(\ne\pm\frac{1}{2};P=2\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)thì \(P=2\)
a) x2 - 5x - y2 -5y
= ( x2 - y2 ) + ( -5x - 5y)
= ( x - y ) ( x + y) - 5( x + y )
= ( x + y ) ( x - y -5)
b) x3 + 2x2 - 4x - 8
= x2 ( x + 2 ) - 4 ( x + 2 )
= ( x +2 ) ( x2 -4 )
= ( x+2)2 ( x-2)
Bai 2 :
a, \(A=\left(x+3\right)^2+\left(x-2\right)^2-2\left(x+3\right)\left(x-2\right)\)
\(=x^2+6x+9+x^2-4x+4-2\left(x^2-2x+3x-6\right)\)
\(=2x^2+2x+13-2x^2-2x+12=25\)
b, \(B=\left(x-2\right)^2-x\left(x-1\right)\left(x-3\right)+3x^2-9x+8\)
\(=x^2-4x+4-x\left(x^2-3x-x+3\right)+3x^2-9x+8\)
\(=4x^2-13x+12-x^3+4x^2-3x=-16x+12-x^3\)
\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)
\(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)
\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)
Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên
\(\Leftrightarrow10⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)
\(\Rightarrow x=-1;0;-3;2\)
Vậy.......................
a: ĐKXĐ: \(x\notin\left\{1;-1;0\right\}\)
b: \(K=\dfrac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+2003}{x}\)
\(=\dfrac{x^2-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+2003}{x}=\dfrac{x+2003}{x}\)
c: Để K là số nguyên thì \(x\inƯ\left(2003\right)\)
hay \(x\in\left\{2003;-2003\right\}\)
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)