Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}}{2x-1}-1\)
\(=\dfrac{2x\sqrt{2}+2\sqrt{2x}-1+2x-2x+1}{2x-1}=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}\)
\(B=\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=1+\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-2x-\sqrt{2x}-x\sqrt{2}-\sqrt{x}}{2x-1}\)
\(=1+\dfrac{-2\sqrt{x}-1-2x}{2x-1}\)
\(=\dfrac{2x-1-2\sqrt{x}-1-2x}{2x-1}=\dfrac{-2-2\sqrt{x}}{2x-1}\)
\(P=A:B=\dfrac{2x\sqrt{x}+2\sqrt{2x}}{2x-1}:\dfrac{-2\sqrt{x}-2}{2x-1}\)
\(=\dfrac{2\sqrt{x}\left(x+\sqrt{2}\right)}{2x-1}\cdot\dfrac{2x-1}{-2\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}\left(x+\sqrt{2}\right)}{\sqrt{x}+1}\)
b: Thay \(\sqrt{x}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\) vào P, ta được:
\(P=\left[-\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\left(\dfrac{3+2\sqrt{2}}{2}+\sqrt{2}\right)\right]:\left[\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{2}+1\right]\)
\(=\left[\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)}{2}\cdot\dfrac{3+4\sqrt{2}}{2}\right]:\left[\dfrac{2+\sqrt{2}+2}{2}\right]\)
\(=\dfrac{-\sqrt{2}\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{4}\cdot\dfrac{2}{4+\sqrt{2}}\)
\(=\dfrac{-\left(\sqrt{2}+1\right)\left(4\sqrt{2}+3\right)}{2\cdot\left(2\sqrt{2}+1\right)}=\dfrac{-\left(4\sqrt{2}+3\right)}{3\cdot\left(3+\sqrt{2}\right)}\)
dễ mà bạn quy đồng biến đỗi là ra chứ làm đánh mấy bài này ra tốn tg lắm
\(A=\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\dfrac{2\sqrt{x}-1}{\sqrt{x}-x}=\left[\dfrac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{\left(1-x\right)\left(x-\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-x\right)\left(2x+\sqrt{x}-1\right)}{\left(1-x\right)\left(x-\sqrt{x}+1\right)}\right]:\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}=\dfrac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1+\sqrt{x}-x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}=\dfrac{\sqrt{x}\left(2x+2\sqrt{x}-\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\div\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}-\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\div\left[-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right]\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left[\left(2\sqrt{x}-1\right)\left(-\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\right]\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left[\dfrac{-\left(x-\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\times\left(2\sqrt{x}-1\right)\right]\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\dfrac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-\left(2\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm