K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

Ta có:\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

\(\Rightarrow\frac{a}{c}=\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)(T/C...)

\(\Rightarrow\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(đpcm\right)\)

28 tháng 12 2016

Cảm ơn bạn nha Phạm Nguyễn Tất Đạt !!

12 tháng 1 2018

\(\frac{c^2-a^2}{a^2+b^2}=\frac{c-a}{a}\)

ta biến đổi vế trái 

\(\frac{c^2-a^2}{a^2+b^2}=\frac{\left(c-a\right)\left(c+a\right)}{a^2+b^2}\)

theo bài ra \(b^2=ac\)

thay vào ta được \(\frac{\left(c-a\right)\left(c+a\right)}{a^2+ac}=\frac{\left(c-a\right)\left(c+a\right)}{a\left(a+c\right)}=\frac{c-a}{a}=vp\)

vậy \(\frac{c^2-a^2}{a^2+b^2}=\frac{c-a}{a}\)

12 tháng 1 2018

b^2=ac => a/b=b/c

Đặt : a/b=b/c=k

=> a=bk;b=ck

=> b=ck;a=ck.k=ck^2

=> c^2-a^2/a^2+b^2 = c^2-c^2k^4/c^2k^4+c^2k^2

= c^2.(1-k^4)/c^2.(k^4+k^2) = 1-k^4/k^4+k^2 = (1-k^2).(1+k^2)/k^2.(k^2+1) = 1-k^2/k^2

= (1-k^2).c/c.k^2 = c-ck^2/ck^2 = c-a/a

=> c^2-a^2/a^2+b^2 = c-a/a

Tk mk nha

22 tháng 1 2017

giúp tui đi T.T

19 tháng 12 2016

Bài 1:
Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (1)

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+c^2}\)

 

 

27 tháng 12 2014

(a^2+b^2)/(b^2+c^2)=(a^2+ac)/(ac+c^2)=a(a+c)/c(a+c)=a/c

20 tháng 10 2017

\(\frac{a^2+ac}{c^2+ac}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

20 tháng 12 2019

Ta có: b2 = ac => \(\frac{a}{b}=\frac{b}{c}\); c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(1)

Lại có: \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(2)

Từ (1), (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)(đpcm)

1 tháng 4 2016

Ta có b^2=ac =>a/b=c/d. Đặt a/b=c/d=k(khác 0) =>a=bk;b=ck                                                                                                                                                                                    =>a/c=c.k^2/c=k^2   (1)                                                                                                                                                                                                                                            (a+2015b)^2/(b+2015c)^2=(bk+2015b/ck+2015c)^2=(b(k+2015)/(c(k+2015))^2=(b/c)^2=(ck/c)^2=k^2 (2)                                                                                                                Từ (1) và (2) => a/c=(a+2015b/b+2015c)^2 => (đpcm)

2 tháng 5 2017

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow b^2=ac\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\left(đpcm\right)\)

2 tháng 5 2017

Đặt \(\frac{a}{b}=\frac{b}{c}=k\) =>\(\hept{\begin{cases}a=bk\\b=ck\end{cases}}\)                                                                                                                                                          Do đó:  \(\frac{a}{c}=\frac{bk}{c}=\frac{ck.c}{c}=k^2\) (1)                                                                                                                                              \(\frac{a^2+b^2}{b^2+c^2}=\frac{\left(bk\right)^2+b^2}{\left(ck\right)^2+c^2}=\frac{b^2k^2+b^2}{c^2k^2+c^2}=\frac{b^2.\left(k^2+1\right)}{c^2.\left(k^2+1\right)}=\frac{b^2}{c^2}=\frac{\left(ck\right)^2}{c^2}=\frac{c^2k^2}{c^2}=k^2\) (2)          Từ (1) và (2) suy ra: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)