Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải : a) Bước 1 : Gọi d \(\in\)ƯC ( a ; b ) , ta sẽ chứng minh rằng d \(\in\)ƯC ( 7a + 5b , 4a + 3b )
Thật vậy , a và b chia hết cho d nên 7a + 5b chia hết cho d , 4a + 3b chia hết cho d .
Bước 2 : Gọi d' \(\in\)ƯC ( 7a + 5b , 4a + 3b ) , ta sẽ chứng minh d' \(\in\)ƯC ( a ; b ) .
Thật vậy , 7a + 5b và 4a + 3b chia hết cho d' nên khử b , ta được 3 ( 7a + 5b ) - 5 ( 4a + 3b ) chia hết cho d' , tức là a chia hết cho d' ; khử a ta được 7 ( 4a + 3b ) - 4 ( 7a + 5b ) chia hết cho d' , tức là b chia hết cho d' . Vậy d' \(\in\)ƯC ( a ; b ) ,
Bước 3 : Kết luận A = B
b) Ta đã có A = B nên số lớn nhất thuộc A bằng số lớn nhất thuộc B , tức là ( a ; b ) = ( 7a + 5b , 4a + 3b ) ( ĐPCM )
theo đề bài:a-b=2(a+b)<=>a-b=2a+2b<=>-a=3b
=> a=-3b
a-b=a:b <=>-3b-b=-3b:b <=>-4b=-3
=>b=\(\frac{3}{4}\)
=> a=-3b=-3.\(\frac{3}{4}\)=\(\frac{-9}{4}\)
vậy a=\(\frac{-9}{4}\);b=\(\frac{3}{4}\)
học tốt!
\(\frac{a^2+a+3}{a+1}=\frac{a.\left(a+1\right)+3}{a+1}=\frac{a.\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\)
Vì a là số nguyên
Để phân số cho trước là số nguyên
=>3/a+1 là số nguyên
=>3 chia hết cho a+1
hay a+1 thuộc Ư(3)={-1;1;3;-3}
=>a thuộc {-2;0;2;-4}
Chúc bạn học giỏi nha!!!
:3 Đây. Bạn sử dụng đồng dư nha
Theo đề bài ta có đồng dư thức như sau:
\(a+1\equiv6\)(mod 6) \(\Rightarrow a\equiv5\)(mod 6)
\(b+2007\equiv2010\)(mod 6) \(\Rightarrow b\equiv3\)(mod 6)
ta có
\(4^a\equiv4^5\)(mod 6)
Suy ra: Ta có đồng dư thức
\(4^a+a+b\equiv4^5+5+3\)(mod 6)
Suy ra \(4^a+a+b\equiv1024+5+3\equiv1032\)(mod 6)
Mà \(1032⋮6\)nên \(\left(4^a+a+b\right)⋮6\)
Vậy \(4^a+a+b\)chia hết cho 6 (ĐPCM)
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
\(\hept{\begin{cases}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{c}{a}=\frac{b}{c}\end{cases}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}}\)
Theo t/c cuae dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) (vì a+b+c khác 0)
=> a/b = 1 => a = b
b/c = 1 => b = c
=> a=b=c
=> \(\frac{b^{3333}}{a^{1111}.c^{2222}}=\frac{b^{3333}}{b^{1111}.b^{2222}}=1\)
cho ac=b2;ab=c2,a+b+ckhác 0 và a,b,clà các số khác 0.
tính;b3333a1111.c2222
Toán lớp 7
{
ac=b2⇒ab =bc |
ab=c2⇒ca =bc |
⇒ab =bc =ca
Theo t/c cuae dãy tỉ số bằng nhau ta có:
ab =bc =ca =a+b+cb+c+a =1 (vì a+b+c khác 0)
=> a/b = 1 => a = b
b/c = 1 => b = c
=> a=b=c
=> b3333a1111.c2222 =b3333b1111.b2222 =1