Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!
nghĩ thui
a) P(x) =2x3 - 3x + x5 -4x3 +4x -x5 + x2 - 2
= (x5 - x5) + (2x3 - 4x3) + x2 + (-3x + 4x) - 2
= -2x3 + x2 + x - 2
b) P(-2) = -(-2) . (-2) 3 + (-2)2 + (-2) - 2
= -16 - 4 - 2 - 2 = -24
P(0) = -2. 03 + 02 + 0 - 2
= 0 - 2 = -2
P(1) = - 2 . 13 + 12 + 1 - 2
= -2 + 1 + 1 - = -2
P(-1) = -2. (-1)3 + (-1)2 + (-1) - 2
= 2 + 1 - 1 - 2 = 0
x = -1 là nghiệm của P(x)
1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)
\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)
\(=5x^4+2x^2+\dfrac{3}{16}\)
2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)
a) \(A\left(x\right)=2\left(x^3\right)^n-7\left(x^n\right)^3+8x^{3n-2}.x^2-4x^3x^{3n-3}\)
\(A\left(x\right)=2x^{3+n}-7x^{3+n}+8x^{3n-2+2}-4x^{3+3n-3}\)
\(A\left(x\right)=2x^{3+n}-7x^{3+n}+8x^{3n}-4x^{3n}\)
\(A\left(x\right)=-5x^{3+n}+4^{3n}\)
b) Thay \(x=\frac{-1}{2};n=1\)vào A(x)
\(A\left(\frac{-1}{2}\right)=-5.\left(\frac{-1}{3}\right)^{3+1}+4^{3.1}\)
\(A\left(\frac{-1}{2}\right)=\left(\frac{5}{3}\right)^4+4^3\)
\(A\left(\frac{-1}{2}\right)=\left(\frac{125}{27}\right)+64\)
\(A\left(\frac{-1}{2}\right)=\frac{1934}{27}\)
Mình nhầm ở phần kết quả cuối cùng của câu a
Đáng lẽ phải là \(A\left(x\right)=-6x^{3-n}-4x^{3n}\)
Bạn tính lại phần b giúp mình nhé, sr
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)
a, Ta có : \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=-2x^4y^3+7xy^2\)
Bậc : 7
b, Thay x = 1 ; y = 1
\(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2\)
\(=2+7=9\)
\(A\left(x\right)=x^4-4x^3+x-x^4+1\)
\(=\left(x^4-x^4\right)+\left(-4x^3\right)+x+1\)
\(=-4x^3+x+1\)
\(A\left(-2\right)=-4\cdot\left(-2\right)^3+\left(-2\right)+1=32-2+1=31\)