Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= u1.u1 + u2.u2+...+un.un
S = u1.(u2 - d) + u2.(u3 - d)+...+un(un+1 - d)
S = u1.u2 + u2.u3 +...+un.un+1-d(u1+u2+...+un)
Đặt A = u2.u3 + u3.u4+...+un.un+1
3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1)
3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u5 - u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1
3d.A = un.un+1.un+2 - u1.u2.u3
3d.A = (u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)
A = [(u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d)
S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2
Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R
Từ công thức truy hồi ta có:
\(x_{n+1}>x_n,\forall n=1,2...\)
\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng
giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)
Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)
=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)
Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)
\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)