Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=5x^2+3x-4-2x^3+4x^2-6\)
\(P\left(x\right)=\left(5x^2+4x^2\right)+3x+\left(-4-6\right)-2x^3\)
\(P\left(x\right)=9x^2+3x-10-2x^3\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
\(Q\left(x\right)=2x^4-x+3x^2-2x^3+\frac{1}{4}-x^5\)
Sắp giảm :
\(P\left(x\right)=-2x^3+9x^2+3x-10\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)\)= \(\left[\left(-2x^3+9x^2+3x-10\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\right)\right]\)
\(A\left(x\right)=\)\(-2x^3+9x^2+3x-10+x^5-2x^4+2x^3-3x^2+x-\frac{1}{4}\)
\(A\left(x\right)=\)\(\left(-2x^3+2x^3\right)+\left(9x^2-3x^2\right)+\left(3x-x\right)+\left(-10-\frac{1}{4}\right)+x^5-2x^4\)
\(A\left(x\right)=6x^2+2x-2,75+x^5-2x^4\)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
a) P(x) = -2x^2 + 4x^4 – 9x^3 + 3x^2 – 5x + 3
=4x^4-9x^3+x^2-5x+3
Q(x) = 5x^4 – x^3 + x^2 – 2x^3 + 3x^2 – 2 – 5x
=5x^4-3x^3+4x^2-5x-2
b)
P(x)
-bậc:4
-hệ số tự do:3
-hệ số cao nhất:4
Q(x)
-bậc :4
-hệ số tự do :-2
-hệ số cao nhất:5
\(M\left(x\right)=\frac{1}{2}x^3-x^2-3x+3\)
\(N\left(x\right)=\frac{1}{2}x^3+x^2-4x+6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(M\left(x\right)-N\left(x\right)=\frac{1}{2}x^3-x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(M\left(x\right)-N\left(x\right)=\left(\frac{1}{2}x^3-\frac{1}{2}x^3\right)+\left(-x^2-x^2\right)+\left(-3x+4x\right)+\left(3-6\right)\)
\(M\left(x\right)-N\left(x\right)=-2x^2+x-3\)
A(x)=M(x)-N(x)=-2x2+x-3=0
đang suy nghĩ tí làm lại sau :v
1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
2) \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
+
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)
\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)
-
\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)
\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
a,
Trước khi sắp xếp ta thu gọn các đa thức trên
P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x
=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)
=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)
=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)
Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến
P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x
Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
b,Tính
+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)
=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)
+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))
=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)
=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)
c,
Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0
=3.0+0-0-0
=0(thỏa mãn)
Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)
=3.0+0-4.0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=-\(\dfrac{1}{4}\)(vô lí)
Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
a) Sắp xếp các hạng tử của đa thức P: x4; 3x3; 3x2; x; 5
Q: x4; 2x3; x2; x; 1
b) P(x) + Q(x) = (3x2 + 5 + x4 - 3x3 - x) + (x4 + x2 - 2x3 + x + 1)
= (3x2 + x2) + (x4 + x4) - (3x3 + 2x3) + (x + x) + (5 + 1)
= 4x2 + 2x4 - 5x3 + 2x +6
Câu a) P(x)=\(x^4-3x^3+3x^2-x+5\)
Q(x)=\(x^4-2x^3+x^2+x+1\)