Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow\hept{\begin{cases}x+y+z+xy+yz+zx=6\\P=x^2+y^2+z^2\end{cases}}\)
\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{9}{3}=3\)
Áp dụng co si hai số dương
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab=2\\A\ge2\left(a+b+1\right)+\dfrac{4}{a+b}=\left[\left(a+b\right)+\dfrac{4}{a+b}\right]+\left(a+b\right)+2\end{matrix}\right.\)
\(A\ge2.\sqrt{4}+2.1+2=8\)
đẳng thức khi
\(\left\{{}\begin{matrix}a;b>0;ab=1\\\left|a\right|=\left|b\right|\\a+b=\dfrac{4}{a+b}\\a=b\end{matrix}\right.\) =>a=b=1
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
Áp dụng BĐT Cô - Si cho các số dương , ta có :
\(a^2+b^2\) ≥ \(2ab=2\) ( Đẳng thức xảy ra khi a = b = 1 )
Do đó : \(A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\) ≥ \(2\left(a+b+1\right)+\dfrac{4}{a+b}\)
⇔ \(A\) ≥ \(2+2\left(a+b\right)+\dfrac{4}{a+b}\)
⇔ \(A\) ≥ \(2+\left(a+b\right)+\left[\left(a+b\right)+\dfrac{4}{a+b}\right]\)
⇔ \(A\) ≥ \(2+2\sqrt{ab}+2\sqrt{\left(a+b\right).\dfrac{4}{a+b}}=2+2+2\sqrt{4}=8\)
⇒ \(A_{Min}=8\) ⇔ a = b = 1
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)
Bạn xem lại xem viết đề đã đúng chưa vậy?