Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tứ giác ADME có
CÂB =AÊM=góc ADM=900
=>ADME là hcn
b)vì MA là đg trung tuyến nên MA=MC=MB
xét tam giác CMA có
CM=MA(cmt)
CÊM=AÊM=900
EM là cạnh chung
=>...(cạnh huyền-cạnh góc vuông)
=>CE=EA
mà EA=MD(EAMD là hcn) nên CE=MD (1)
ta có MA=MC(cmt)
mà MA=ED(EAMD là hcn)
=>MC=ED (2)
xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)
=>CMED là hbh
c)
xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID
xét tứ giác MKDI có
KM=KD(K là giao điểm hai dg chéo của hcn)
KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)
MI=ID(cmt)
=>KMID là thoi
mà KI là đg chéo của góc I nên KI cũng là p/g của góc I
(ck hk tốt nhé)
d) gọi O là trung điểm của FB
nối O vs N
=> ON là đường trung bình của tam giác FBD và tam g BFC
=> ON // FC , ON // BD ( T/C đường trung bình )
=> FC // BD
tứ giác FBDC có FB // CD (vì AB // CD )
FC // BD (cmt)
=> FBDC là HBH (vì là tứ giác có các cạnh đối //)
=> FD giao BC tại trung điểm mỗi đường (t/c HBH)
mà N là trung điểm BC => N là trung điểm FD
=> N,F,D thẳng hàng
a. Do ABCD là hình bình hành nên
• AB=CD
• AD=BC=> 1/2AD=1/2BC=> MD=NC • AD//BC
=> MD//NC
=> MNCD là hình bình hành
Ta có AD=2AB=> AD=2CD
=> CD=1/2AD=MD
Xét hbh MNCD: MD=CD
=> MNCD là hình thoi b.
Do MNCD là hình thoi => MN//CD Mà AB//CD
=> MN//AB Mà F thuộc AB, E thuộc MN
=> BF//NE Xét tam giác BFC có BN=NC, NE//BF
=> FE=EC => E là trung điểm FC
a, Do ABCD là hình bình hành ( gt )
=> BAD + ADC = 180 độ ( t/c hbh )
Mà BAD = 120 độ ( gt ) => ADC = 60 độ
Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI
=> ADI = CDI = 30 độ
Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )
=> AID = ADI = 30 độ => Tam giác AID cân
=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )
b, CM ADF đều
Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )
=> 1/2 AB = 1/2 CD => AI = BI = DF = CF
mà AI = AD => AD = DF
=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )
=> ADF đều
CM AFC cân :
DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )
mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )
c, Ta có : AF = DF = CF ( cmt )
=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD
Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD
và AF = 1/2CD
=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )
=> AD vuông góc với AD ( Đpcm )