K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

CM=MB+MC

=1/2(AD+DB)+AD

=1/2AD+1/2DB+AD

=3/2AD+1/2DB

=-3/2DA+1/2DB

=>CM=-3/2DA+1/2DB

18 tháng 10 2019

Sao MB=MB+MC bạn?

10 tháng 10 2019

\(\overrightarrow{BA}+\overrightarrow{BC}+2\overrightarrow{DO}=\overrightarrow{BD}+\overrightarrow{DB}=\overrightarrow{0}\)

\(\overrightarrow{CM}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}=\frac{1}{4}\left(\overrightarrow{CD}+\overrightarrow{CB}\right)+\frac{1}{2}\overrightarrow{CB}=\frac{1}{4}\overrightarrow{CD}+\frac{3}{4}\overrightarrow{CB}\)

11 tháng 10 2019

Sao từ \(\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}\) lại ra cái 1/4 vậy bạn?

1 tháng 4 2017

a) Ta có, theo quy tắc ba điểm của phép trừ:

= - (1)

Mặt khác, = (2)

Từ (1) và (2) suy ra:

= - .

b) Ta có : = - (1)

= (2)

Từ (1) và (2) cho ta:

= - .

c) Ta có :

- = (1)

- = (2)

= (3)

Từ (1), (2), (3) suy ra đpcm.

d) - + = ( - ) + = + = + ( vì = ) =

17 tháng 8 2019

a) Chữa đề: \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(Ta\text{ }có:\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AB}\\ =\overrightarrow{CB}+\overrightarrow{DA}+\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=\overrightarrow{CB}+\overrightarrow{DA}\)

\(\)\(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CA}+\overrightarrow{CB}+\overrightarrow{DC}\\ =2\overrightarrow{CM}+2\overrightarrow{NC}=2\left(\overrightarrow{NC}+\overrightarrow{CM}\right)=2\overrightarrow{NM}\)

Vậy \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(\text{b) }\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=-\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{CA}+\overrightarrow{CB}\right)\\ =-\left[\left(\overrightarrow{DA}+\overrightarrow{DB}\right)+\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\right]\\ =-\left(2\overrightarrow{DM}+2\overrightarrow{CM}\right)=2\left(\overrightarrow{MD}+\overrightarrow{MC}\right)=4\left(\overrightarrow{MN}\right)\)

\(\text{c) }2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{DA}\right)+\left(\overrightarrow{AI}+\overrightarrow{NA}\right)\right]\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{DB}\right)+\overrightarrow{NI}\right]=2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)\)

Mà IN là dường trung bình \(\Delta BCD\)

\(\Rightarrow\left\{{}\begin{matrix}IN//BD\\IN=\frac{1}{2}BD\end{matrix}\right.\Rightarrow\overrightarrow{IN}=\frac{1}{2}\overrightarrow{BD}\\ \Rightarrow2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)=2\left(\overrightarrow{DB}+\frac{1}{2}\overrightarrow{DB}\right)=2\cdot\frac{3}{2}\overrightarrow{DB}=3\overrightarrow{DB}\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2017

Lời giải:

a) Vì $O$ là trung điểm $AC$, $I$ là trung điểm $BC$ nên $OI$ là đường trung bình của tam giác $ABC$

\(\Rightarrow IO\parallel AB; IO=\frac{1}{2}AB\)

\(\Rightarrow \overrightarrow{OI}=\frac{1}{2}\overrightarrow{AB}\)

Do đó: \(2\overrightarrow{AI}-2\overrightarrow{AO}=2(\overrightarrow{AI}-\overrightarrow{AO})=2\overrightarrow{OI}=\overrightarrow{AB}\)

\(\Leftrightarrow 2\overrightarrow{AI}=2\overrightarrow{AO}+\overrightarrow{AB}\) (đpcm)

b) Do $ABCD$ là hình bình hành nên \(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)

\(\Rightarrow \overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DB}=4\overrightarrow{DO}\) (1)

Lại có:

\(\overrightarrow{DG}=\overrightarrow{DO}+\overrightarrow{OG}\)

Vì $G$ là trọng tâm $ABC$ nên \(\overrightarrow{OG}=\frac{1}{3}\overrightarrow{OB}=\frac{1}{3}\overrightarrow{DO}\)

\(\Rightarrow \overrightarrow{DG}=\overrightarrow{DO}+\frac{1}{3}\overrightarrow{DO}=\frac{4}{3}\overrightarrow{DO}\)

\(\Rightarrow 3\overrightarrow{DG}=4\overrightarrow{DO}\) (2)

Từ \((1);(2)\Rightarrow 3\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\)(đpcm)

2 tháng 12 2016

Đề thiếu @@

 

18 tháng 5 2017

A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).