Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{DAB}=180^0-60^0=120^0\)
\(\widehat{DCB}=\widehat{ADC}=60^0\)
b: Xét ΔADE vuông tại E và ΔBCF vuông tại F có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó; ΔADE=ΔBCF
Suy ra: DE=CF
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Xét \(\Delta\)ADE và \(\Delta\)BCF :
AED^ = BFC^ =90o
AD = BC
ADE^ = BCF^
=> \(\Delta\)ADE = \(\Delta\)BCF (cạnh huyền_góc nhọn)
=> DE = CF (2 cạnh tương ứng)
b) Xét \(\Delta\)DAB và \(\Delta\)CBA:
AD= BC
DAB^ = CBA^
AB chung
=> \(\Delta\)DAB = \(\Delta\)CBA (c.g.c)
=> ADB^ =BCA^ (2 góc tương ứng)
Ta có: ADC^ = ADB^ + BDC^ => BDC^ = ADC^ - ADB^
BCD^ = BCA^ + ACD^ => ACD^ = BCD^ - BCA^
mà ADC^ = BCD^ và ADB^ = BCA^ (cmt)
=> BDC^ = ACD^
=> \(\Delta\)DIC cân tại I
=> ID = IC
Xét \(\Delta\)AID và \(\Delta\)BIC:
AD = BC
ADI^ = BCI^ (cmt)
ID = IC (cmt)
=> \(\Delta\)AID = \(\Delta\)BIC (c.g.c)
=> IA = IB (2 cạnh tương ứng)
c)
d)
---ko làm nữa đâu--- +.+