K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Một bài toán cổ điển:

A B C D E F .

Chứng minh rằng \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)

Thôi t chỉ liên tưởng thế thôi, vào bài nào :vv

A B C D E F H H

Cần chứng minh \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{3}\Leftrightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{4}{3}\)

Ta có: AB//CF ( do ABCD là hình thoi ) \(\Rightarrow\frac{AB}{AE}=\frac{CF}{EF}\Leftrightarrow\frac{4}{AE^2}=\frac{CF^2}{EF^2}\)(theo định lý thales)

Tương tự ta cũng có: \(\frac{4}{AF^2}=\frac{CE^2}{EF^2}\)\(\Rightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{CE^2+CF^2}{EF^2}\)

giờ chỉ cần chứng minh \(\frac{CE^2+CF^2}{EF^2}=\frac{4}{3}\Leftrightarrow EF=\frac{\sqrt{3\left(CE^2+CF^2\right)}}{2}\)(*)

Kẻ CH vuông góc với EF. Dễ dàng chứng minh góc CEF=45 và CFE=15

Trong tam giác vuông EHC:\(EH=CH.\cot45^0\)

Trong tam giác vuông FHC:\(FH=CH.\cot15\)\(\Rightarrow EF=CH.\left(\cot45^0+\cot15^0\right)\)

Tương tự ta có:\(CH=CE.\sin45^0\)\(\Rightarrow CE=\frac{CH}{\sin45^o}\)và \(CF=\frac{CH}{\sin15^o}\)

(*) được chứng minh khi \(4\left(\cot45+\cot15\right)^2=\frac{3}{\left(\sin45\right)^2}+\frac{3}{\left(\sin15\right)^2}\)

hình như nhầm ở đâu ý :< ứ gõ lại đâu 

8 tháng 9 2017

i don't know

17 tháng 7 2018

Bạn mở chuyên mục Câu hỏi hay đi. Có lời giải đấy.

Chúc bạn học tốt.

15 tháng 4 2019

trl

câu b bài này hình như mik làm rồi

để mik làm xem

15 tháng 4 2019

bạn giúp mik làm câu b nhé thanks 

27 tháng 8 2023

Bây giờ e lấy vợ rồi cũng nên

2 tháng 10 2016

A B C D N M x K H

Hình vẽ không được đẹp cho lắm :))

Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ

Từ A lại kẻ đường thẳng vuông góc với CD tại H.

Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK

=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)

Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)

\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)

Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)

26 tháng 2 2018

1/ Do EF//AD nên \(EF\perp AB\)

Theo tính chất đường kính dây cung ta có AB đi qua trung điểm EF hay AB là trung trực EF.

Vậy thì AE = AF; BE = BF.

2/ Ta thấy hai tam giác vuông DAO và DCO có chung cạnh huyền DO nên DAOC là tứ giác nội tiếp đường tròn đường kính DO.

3/Xét tam giác DEC và DCB có :

Góc D chung

\(\widehat{DCE}=\widehat{DBC}\)   (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)

\(\Rightarrow\Delta DEC\sim\Delta DCB\left(g-g\right)\)

\(\Rightarrow\frac{DE}{DC}=\frac{DC}{DB}\Rightarrow DC^2=DE.DB\)

4/ Vì \(\Delta DEC\sim\Delta DCB\Rightarrow\frac{EC}{BC}=\frac{DC}{DB}\Rightarrow EC=\frac{BC.DC}{DB}\)

\(\Rightarrow AC.EC=\frac{AC.BC.DC}{DB}=\frac{2S_{ABC}.DC}{DB}\)

Ta cần chứng minh AC.EC = AF.CH (*) hay \(\Rightarrow\frac{2S_{ABC}.DC}{CH}=AF.DB\Rightarrow\frac{2S_{ABC}.DC}{CH}=AE.DB\)

\(\Rightarrow AE.DB=AB.DC=AB.DA\)  (**)

(**) đúng vì \(AE.DB=AB.DA\left(=S_{DAB}\right)\)

Vậy (*) đúng hay AF.CH = AC.EC

5/ Ta cần chứng minh KA = KD để suy ra KE là tiếp tuyến. 
Kéo dài AE, cắt CH tại M .

Do DA // CH (Cùng vuông góc AB) nên \(\frac{AK}{CM}=\frac{KI}{IC}\) 
và \(\frac{KD}{CH}=\frac{KI}{IC}\Rightarrow\frac{AK}{MC}=\frac{KD}{CH}\)  (1)
Gọi P, J lần lượt là giao điểm của DP với CH và BC với AD.
\(\Rightarrow\frac{HP}{AD}=\frac{BP}{BD}=\frac{CP}{DJ}\)  (2)

Xét tam giác ACJ vuông tại C, AD = DC nên DC là đường trung tuyến. Suy ra AD = DJ. 
Từ (2) suy ra HP = PC.
Xét tam giác vuông AMH và PBH, ta có \(\widehat{AMH}=\widehat{HBP}\) (cạnh tương ứng vuông góc) 
\(\Rightarrow\Delta AMH\sim\Delta PBH\left(g-g\right)\)

\(\Rightarrow\frac{MH}{BH}=\frac{AH}{PH}\Rightarrow\frac{MH}{AH}=\frac{BH}{PH}\)
\(\Rightarrow MH=\frac{AH.HB}{PH}=\frac{AH.HB}{\frac{CH}{2}}=\frac{2AH.HB}{CH}\)   (3)
Do CH2 = AH.HB \(\Rightarrow\frac{2AH.HB}{CH}=2CH\)
Từ (3) \(\Rightarrow MH=2CH\Rightarrow CM=CH\) 
Từ (1) ta có AK = KD 
\(\Rightarrow\) KE là trung tuyến của tam giác vuông ADE \(\Rightarrow KA=KE\)
\(\Rightarrow\Delta OKA=\Delta OKE\left(c-c-c\right)\Rightarrow\widehat{KEO}=\widehat{KAO}=90^o\)
hay KE là tiếp tuyến của (O).