K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)

\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)

Từ (1) và (2) => đpcm

b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)

\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)

Từ (3) và (4) => đpcm

c, làm giống câu a

8 tháng 10 2017

a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)

            \(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)

(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

8 tháng 5 2017

Từ\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{b^4}{c^4}=\frac{c^4}{d^4}=\frac{d^4}{e^4}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}.\frac{d}{e}\)

\(\Rightarrow\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{a}{e}\) (1)

Ta lại có : \(\frac{2a^4}{2b^4}=\frac{3b^4}{3c^4}=\frac{4c^4}{4d^4}=\frac{5d^4}{5e^4}=\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\) (TC DTSBN) (2)

Từ (1) ; (2) \(\Rightarrow\frac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}=\frac{a}{e}\) (đpcm)

6 tháng 10 2018

a)Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)

Mặt khác,theo tính chất dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+b+c+d}{b+d+c+e}=\frac{a+b+c+d}{b+c+d+e}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^{\left(đpcm\: \right)}\)

b) Xin phép sửa đề! =) CMR: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)

Mặt khác theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\) (2)

Từ (1) và (2) ta có: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}^{\left(đpcm\right)}\)

P/s: Bạn đánh sai đề hoài như thế sẽ ảnh hưởng đến việc giải bài của các bạn khác gây khó khăn cho họ. Như vậy,họ sẽ không giúp bạn nữa. Rút kinh nghiệm lần sau đánh đề cẩn thận hơn nhé!

6 tháng 10 2018

a) Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Leftrightarrow\frac{abcd}{bdce}=\frac{a}{2}\) (1)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+c+b+d}{b+d+c+e}\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)\)( đpcm )

b) Mình sửa lại tí nha: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)

Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{\left(abcd\right)^4}{\left(bdce\right)^4}=\frac{a}{e}\)(1)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+c^4+b^4+d^4}{b^4+d^4+c^4+e^4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)( đpcm )

10 tháng 7 2019

Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé

Bài 1:

a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)

Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

CM : a = b = c

10 tháng 7 2019

Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

vì \(a+b+c\ne0\)

\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)

Do đó : \(a=b=c\).

Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)

Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)

\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)

16 tháng 3 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)

Đặt \(k=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{a+b+c+d}{b+c+d+e}\)

\(\Rightarrow k^4=\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{abcd}{bcde}=\frac{a}{e}\)

\(\Rightarrow\left(\frac{a+b+c+d}{b+c+d+e}\right)^4=\frac{a}{e}\)(đpcm)

6 tháng 1 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{a^4}{c^4}=\frac{\left(a-2b\right)^4}{\left(c-2d\right)^4}\)\(\frac{a^4}{c^4}=\frac{b^4}{d^4}=\frac{2017b^4}{2017d^4}=\frac{a^4+2017b^4}{c^4+2017d^4}\)
=> đpcm

14 tháng 1 2017

bai bạn làm đó còn thiếu một bước, theo mk biết thì của bạn chưa làm song hay bạn làm tắt z . bạn có thể làm đầy đủ cho mk nhé