K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

\(a,ĐKXĐ\hept{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}\Leftrightarrow x\ne\pm3}\)

Ta có: \(M=\frac{3}{x-3}-\frac{6x}{9-x^2}+\frac{x}{x+3}\)

            \(=\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)

           \(=\frac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

            \(=\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}\)

             \(=\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)

              \(=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

              \(=\frac{x+3}{x-3}\)

\(b,x=\frac{1}{2}\Rightarrow M=\frac{\frac{1}{2}+3}{\frac{1}{2}-3}=-\frac{7}{5}\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

23 tháng 12 2017

\(x\ne+-3\)

\(3\left(x-3\right)+1\left(x+3\right)+18\)

3x-9+x+3+18

4x+15

x=-15/4

20 tháng 1 2019

a) \(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}+\frac{x^2+3}{x^4+4x^2+3}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+3x^2+x^2+3}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^2\left(x^2+3\right)+x^2+3}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\)

\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\)

\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)

\(M=\frac{0+x^4+x^2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)

\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\)

\(M=\frac{x^2}{x^4-x^2+1}\)

25 tháng 2 2020

\(M+\frac{2x^2}{\left(3-x\right)\left(x+1\right)}=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}-\frac{2x^2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(3-x\right)}{\left(3-x\right)\left(x-1\right)\text{​​}\left(x+1\right)}+\frac{4x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}+\frac{2x^2\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{6x-2x^2+4x^2-4x+2x^3-2x^2}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x^3-2x}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)

có gì sai sót bạn bỏ qua
Học tốt 

25 tháng 2 2020

b) Tìm điều kiện để M đc xác định
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
để M xác định thì 
3 - x
0  => x 3
x + 1
0 => x -1
Vậy x ≠ { 3 ; -1 } thì M đc xác định

 

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)