Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)
\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)
b) A=\(x^4-13x^2+36\) không làm được nữa.....
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)
Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)
Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <
Phương trình vô nghiệm khi m >
Phương trình có nghiệm kép khi m = .
pt có 2 nghiệm pb dương
<=> {delta=25-4m>0
{ x1+x2=5>0
{x1..x2=m>0
<=> 0<m <25/4
( x1canx2+x2canx1)2=36
x1^2..x2 +x1 ..x2^2 +2 (x1×x2)can (x1×x2)=36
sau đó sử ddụng viet và thay vào
mn cho mk hỏi
nếu đđặt câu hỏi trên OLM này thì khi có người giải đáp cho mk thì có thông báo k z
Lập \(\Delta=25-4m\)
Phương trình có 2 nghiệm \(x_1;x_2\)khi \(\Delta\ge0\)hay \(m\le\frac{25}{4}\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)
2 nghiệm \(x_1;x_2\)dương khi \(\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)hay m>0
Điều kiện để pt có 2 nghiệm dương x1;x2 là \(0< m< \frac{25}{4}\)(*)
Ta có \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=5+2\sqrt{m}\)
=> \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{5+2\sqrt{m}}\)
Ta có \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\Leftrightarrow\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)=6\)
hay \(\sqrt{m}\sqrt{5+2\sqrt{m}}=6\Leftrightarrow2m\sqrt{m}+5m-36=0\left(1\right)\)
Đặt \(t=\sqrt{m}\ge0\)khi đó (1) trở thành
\(\Leftrightarrow2t^2+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\2t^2+9t+18=0\end{cases}\Rightarrow t=2\Rightarrow m=4\left(tmđk\right)}\)
(vì 2t2+9t+18 vô nghiệm)
Vậy m=4 thì pt đã cho có 2 nghiệm dương x1;x2 thỏa mãn \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
a, Vì phương trình có nghiệm là 1+\(\sqrt{2}\)
=> \(\left(1+\sqrt{2}\right)^2+\left(m-1\right)\left(1+\sqrt{2}\right)-6=0\)
\(\Leftrightarrow1+2+2\sqrt{2}+m-1+\sqrt{2}m-\sqrt{2}-6=0\)
\(\Leftrightarrow-4+\sqrt{2}+m+\sqrt{2}m=0\)
\(\Leftrightarrow m+\sqrt{2}m+\sqrt{2}=-4\)