K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 3 2019

\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-1\end{matrix}\right.\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{10}{3}=0\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}+\frac{10}{3}=0\Leftrightarrow\frac{4\left(m-1\right)^2+2}{-1}+\frac{10}{3}=0\)

\(\Leftrightarrow4m^2-8m+\frac{8}{3}=0\Rightarrow\left[{}\begin{matrix}m=\frac{3+\sqrt{3}}{3}\\m=\frac{3-\sqrt{3}}{3}\end{matrix}\right.\)

6 tháng 7 2017

Để PT có 2 nghiệm phân biệt thì

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)

\(\Leftrightarrow m< 0\)

Theo vi et ta có:

\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)

Theo đề bài thì

\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)

\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)

\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)

Với m < 0  thì VP > 0 

Vậy không tồn tại m để thỏa bài toán.

2 tháng 5 2016

dễ lắm bạn mình cm pt đã cho luôn có hai nghiệm pb với mọi m sau đó áp dụng viet tính tích và tổng hai nghiệm  rồi quy đồng hệ thức đứa về dạng tích tổng rồi thay vô là dc

19 tháng 10 2019

PT

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)

PT(1)

\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)

Ta co:

\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)

\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)

PT(2)

\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)

Ta lai co:

\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)

De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet

Suy ra PT(2) co 2 nghiem phan biet khi 

\(5-\sqrt{m+16}>0\)

\(\Leftrightarrow m< 9\)

\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)

Ta lai co:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)

Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

\(\Leftrightarrow-\frac{8}{m+15}=-1\)

\(\Leftrightarrow m=-7\)

Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man 

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7