Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
a) Phương trình có nghiệm \(x=2-\sqrt{3}\) nên :
\(\left(2-\sqrt{3}\right)^3+a.\left(2-\sqrt{3}\right)^2+\left(2-\sqrt{3}\right)b-1=0\)
\(\Leftrightarrow20-11\sqrt{3}+a.\left(7-4\sqrt{3}\right)+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow7a+2b+19=\sqrt{3}.\left(11+4a+b\right)\) (*)
Với a,b là các số hữu tỉ thì từ (*) suy ra :
\(\hept{\begin{cases}7a+2b+19=0\\11+4a+b=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\end{cases}}\) ( Thỏa mãn )
b) Hóng cách làm vì mình không biết làm :((
giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)
\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)
Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)
\(\Rightarrow17a+3b+c=6a+b=0\)
\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)
Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)
pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)
Gọi m là nghiệm chung của 2 phương trình thì ta có:
\(\hept{\begin{cases}m^2+am+6=0\\m^2+bm+12=0\end{cases}}\)
\(\Rightarrow2m^2+\left(a+b\right)m+18=0\)
Để phương trình có nghiệm thì
\(\Delta=\left(a+b\right)^2-144\ge0\)
\(\Leftrightarrow\left|a+b\right|\ge12\)
Ta lại có:
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)
Tới đây thì đơn giản rồi nên b tự làm nhé.