K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3

14 tháng 7 2021

 \(x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{2}}\)

Ta có: Đặt \(A=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)=> \(A^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{\sqrt{5}+1}\)

=> \(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)=> \(A=\sqrt{2}\)

 \(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

==> \(x=\sqrt{2}-\left(\sqrt{2}+1\right)=-1\)

Do đó: N = (-1)2019 + 3.(-1)2020 - 2.(-1)2021 = -1 + 3 + 2 = 4

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

24 tháng 7 2020

Bằng 4

23 tháng 7 2020

Câu 1 :

a, Đáp án nên nó đúng nhoa

b, MinA = 2016,75 .

Câu 2 :

a, - \(\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)

b, - Với m bằng - 3 .

Câu 3 :

a, \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

b, Hỏi tí vế 2 là bằng 4 hay - 4 .

6 tháng 8 2017

\(\frac{A}{\sqrt{2}}=\frac{1+\sqrt{7}}{2+\sqrt{8+2\sqrt{7}}}+\frac{1-\sqrt{7}}{2-\sqrt{8-2\sqrt{7}}}\)

         \(=\frac{1+\sqrt{7}}{2+1+\sqrt{7}}+\frac{1-\sqrt{7}}{2-\sqrt{7}+1}\)

            \(=\frac{1+\sqrt{7}}{3+\sqrt{7}}+\frac{1-\sqrt{7}}{3-\sqrt{7}}\)

           =\(\frac{\left(1+\sqrt{7}\right)\left(3-\sqrt{7}\right)+\left(1-\sqrt{7}\right)\left(3+\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

          \(=\frac{-8}{2}=-4\)

\(\Rightarrow A=-4\sqrt{2}\)

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)Giá trị nhỏ nhất của biểu thức A bằng  ........Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........Câu 5: Nghiệm của phương...
Đọc tiếp

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......

Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......

Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)
Giá trị nhỏ nhất của biểu thức A bằng  ........

Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.
Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........

Câu 5: Nghiệm của phương trình\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)là x = .............

Câu 6: Đa thức dư trong phép chia đa thức x + x3 + x9 + x27 + x81 + x243 cho đa thức (x2 - 1) là ax + b.
Khi đó a + b = .......

Câu 7: Cho x, y thuộc N* thỏa mãn x + y = 11.
Giá trị lớn nhất của biểu thức A = xy là:

Câu 8: Số giá trị của a để hệ xy+x+y=a+1 và x2y+ y2x có nghiệm duy nhất là:

Câu 9: Viết số 19951995 dưới dạng 19951995 = a+ a+ a+ ...... + an.
Khi đó a12 + a22 + a32 + ...... + anchia cho 6 thì có số dư là ............

0