Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 0<a<1 ;0<b<2 ;0<c<3
=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1
=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)
c/m tương tự với b,c
=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)
và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)
Cộng các vế của bđt với nhau
=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6
Vậy GTLN của A là 6
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-0a1-0b2-0c3tim-gtln-cua-a-dfracsqrt1-aa-dfracsqrt2-bb-dfracsqrt3-ccbai-nay-dung-cauchyminh-suy-nghi.179994478119
Câu a :
Áp dụng BĐT \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\left(a\ne b;a,b>0\right)\) ta có :
\(\dfrac{1}{\sqrt{1.1998}}>\dfrac{2}{1+1998}=\dfrac{2}{1999}\)
\(\dfrac{1}{\sqrt{2.1997}}>\dfrac{2}{2+1997}=\dfrac{2}{19999}\)
.......................................................
\(\dfrac{1}{\sqrt{1998.1}}>\dfrac{2}{1998+1}=\dfrac{2}{1999}\)
Cộng tất cả vế với nhau ta được : \(P>2.\dfrac{1998}{1999}\)
\(\Rightarrowđpcm\)
Câu a, b sao tính chất cái cuối khác những cái còn lại thế. Vậy sao biết tới đâu thì nó dừng.
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)
\(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{x+y+z}{xyz}\right)=3\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=3\) ( Do x+y+z=xyz )
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3-2=1\)
Vậy P = 1
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384
Ta có :
\(M=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(\Rightarrow M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
\(\Rightarrow M=\frac{2\sqrt{x-1}}{2x}+\frac{2\sqrt{y-2}.\sqrt{2}}{2y.\sqrt{2}}+\frac{2\sqrt{z-3}.\sqrt{3}}{2z.\sqrt{3}}\)
\(\Rightarrow M\le\frac{x-1+1}{2x}+\frac{y-2+2}{2y.\sqrt{2}}+\frac{z-3+3}{2z.\sqrt{3}}\)( Áp dụng BĐT \(2xy\le x^2+y^2\))
\(\Rightarrow M\le\frac{x}{2x}+\frac{y}{2y.\sqrt{2}}+\frac{z}{2z.\sqrt{3}}\)
\(\Rightarrow M\le\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\)