Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cm 10a + b chia hết cho 7
ta có : a+5b chia hết cho 7 => 10(a+5b) chia hết cho 7=> 10a+50b chia hết cho 7)(1)
xét hiệu: 10a+50b-(10a+b)=49b chia hết cho 7 (2)
từ (1);(2) =>10a+b chia hết cho 7
cm a+5b chia hết cho 7
ta có 10a+b chia hết cho 7=> 5(10a+b) chia hết cho 7 => 50a+5b chia hết cho 7 (1)
xét hiệu: 50a+5b-(a+5b)=49a chia hết cho 7 (2)
từ (1);(2)=>a+5b chia hết cho 7
nhớ tích đúng cho mình nhé ahihi
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do \(A⋮13\Rightarrow10A⋮13\)
Mà \(39b⋮13\) nên B = \(10a+b⋮13\left(đpcm\right)\)
vì 39 chia hết cho 13 suy ra 39a chia hết cho 13
mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13
suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)
vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13
k cho mik nha
Tham khảo:
Câu hỏi của nguyễn thùy linh - Toán lớp 6 - Học toán với OnlineMath
nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Ta có: (10a + b)+8(3a + 2b)=34a+17b chia hết cho 17.
Mặt khác: 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17, từ đó 10a + b chia hết cho 17.
Ngược lại, do 10a + b chia hết cho 17 => 8(3a + 2b) chia hết cho 17 mà (8; 17)= 1 => 3a+2b chia hết cho 17.
b) Tương tự, lấy (x + 7y) + 5(6x + 11y)
c) Cũng tương tự, lấy (x + 10y) + 3(4x +y)
Nhớ tíck mình nha! :)
a)
Goị 3 số chẵn liên tiếp đó lần lượt là 2k; 2k + 2; 2k + 4
Ta có: 2k + (2k + 2) + (2k + 4)
= 2k + 2k + 2 + 2k + 4
= 6k + 6
Vì 6k \(⋮\)6 ; 6 \(⋮\)6 => 2k + (2k + 2) + (2k + 4) \(⋮\)6 => Tổng 3 số chẵn liên tiếp chia hết cho 6 (dpcm)
b) ab + ba
= a0 + b + b0 + a
= (a0 + a) + (bo + b)
= aa + bb
Vì aa \(⋮\)11 ; bb \(⋮\)11 => aa + bb \(⋮\)11 => ab + ba \(⋮\)11 (dpcm)
c)
+> Vì a + 4b \(⋮\)13 => 10(a + 4b) \(⋮\)13
=> 10a + 40 b \(⋮\)13
=> 10a + b + 39b \(⋮\)13
Mà 39b \(⋮\)13 => 10a + b \(⋮\)13 (dpcm)
+> Vì 10a + b \(⋮\)13 => 4(10a + b) \(⋮\)13
=> 40a + 4b \(⋮\)13
=> 39a + a + 4b \(⋮\)13
Mà 39a \(⋮\)13 => a + 4b \(⋮\)13 (dpcm)
Ta có
\(a+4b⋮13\)
\(\Rightarrow10a+40b⋮13\)
\(\Rightarrow\left(10a+b\right)+39b⋮13\)
\(\Rightarrow10a+b⋮13\)
Chứng minh chiều ngược lại
Ta có:
\(10a+b⋮13\)
\(\Rightarrow40a+4b⋮13\)
\(\Rightarrow\left(a+4b\right)+39a⋮13\)
\(\Rightarrow a+4b⋮13\)