Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B E C F H
a) Xét \(\Delta ABE,\Delta ACF\) có :
\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
b) Xét \(\Delta BFH,\Delta CEH\) có :
\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^o\\\widehat{BHF}=\widehat{CHE}\left(\text{Đối đỉnh}\right)\end{matrix}\right.\)
=> \(\Delta BFH\sim\Delta CEH\left(g.g\right)\)
\(\Rightarrow\dfrac{CH}{BH}=\dfrac{EH}{CF}\)
\(\Rightarrow CH.CF=BH.EH\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE\(\sim\)ΔACF
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay \(AF\cdot AB=AE\cdot AC\)
b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
A B C F E K H
a) Xét tam giác AFC và tam giác AEB có:
^A chung
^F vuông góc ^E
Vậy: tam giác AFC đồng dạng tam giác AEB (g.g)
vì tam giác AFC đồng dạng tam giác AEB (cmt) nên:
=> AF/AC = AE/AB
=> AE.AC = AF.AB (đpcm)
b) từ H kẻ HK vuông góc BC
+) xét tam giác BKH và tam giác BEC có:
^HBC chung
^BKH = ^BEC (= 90 độ)
vậy: tam giác BKH đồng dạng tam giác BEC (g.g)
=> BK/BH = BE/BC
=> BH.BE = BK.BC (1)
+) xét tam giác CKH và tam giác CFB:
^BHC chung
^CKH = ^CFB (= 90 độ)
vậy: tam giác CKH đồng dạng tam giác CFB
=> CK/CH = CF/CB
=> CH.CF = BC.CK (2)
Từ (1) và (2) ta có:
BH.BE + CH.CF = BK.BC + CK.BC
= BC.(BK + CK)
= BC.BC
= BC^2
=> BH.BE + CH.CF = BC^2 (đcpm)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
DO đo: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
DO đó: ΔAEF\(\sim\)ΔABC
c: Xét ΔMFB và ΔMCE có
góc MFB=góc MCE
góc FMB chung
Do đó:ΔMFB\(\sim\)ΔMCE
Suy ra: MF/MC=MB/ME
hay \(MF\cdot ME=MB\cdot MC\)
2/Xét ∆ABD và ∆ACE có:
chung
∆ABD ∽ ∆ACE (g.g)
b.
Xét ∆HDC và ∆HEB có:
(vì BD AC, CE AB)
(đ đ)
∆HDC ∽ ∆HEB(g.g)
\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)
c.Vì H là giao điểm của 2 đường cao CE,BDH là trực tâm của ∆ABC
AH BC tại F
Xét ∆CIF và ∆CFA có:
: chung
(vì AF BC, FI AC)
∆CIF ∽ ∆CFA (g.g)
Bạn tự vẽ hình nha
A B C E F D H
b.
Vẽ đường cao AD cũng cắt BE và CF
Xét tam giác BDH và tam giác BEC có:
góc D = E = 90o
góc B chung
Do đó: tam giác BDH~BEC (g.g)
=> \(\dfrac{BD}{BE}=\dfrac{BH}{BC}\Rightarrow BH.BE=BD.BC\) (1)
Xét tam giác CHD và tam giác CBF có:
góc D = F = 90o
góc C chung
Do đó: tam giác CHD~CBF (g.g)
=> \(\dfrac{CH}{CB}=\dfrac{CD}{CF}\Rightarrow CH.CF=CD.BC\) (2)
Từ (1) và (2) cộng vế theo vế ta được:
\(BH.BE+CH.CF=BD.BC+CD.BC\)
\(\Rightarrow BH.BE+CH.CF=BC\left(BD+CD\right)\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
A B C F E H
a xét △ AEB và △AFC có
\(\widehat{E}=\widehat{F}=90^0\)
\(\widehat{A}CHUNG\)
=> △ AEB ∼ △AFC (g.g)
=> \(\dfrac{AE}{FA}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{FA}{AC}\)
xét △ AEF và △ ABC có
\(\widehat{A}CHUNG\)
\(\dfrac{AE}{AB}=\dfrac{FA}{AC}\)
=> △ AEF ∼ △ ABC (c.g.c )(đpcm)