Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHC và tam giác BAC
^C _ chung
^AHC = ^BAC = 900
Vậy tam giác AHC ~ tam giác BAC (g.g)
b, Xét tam giác AHB và tam giác CHA
^AHB = ^CHA = 900
^HAB = ^HCA ( cùng phụ ^HAC )
Vậy tam giác AHB~ tam giác CHA (g.g)
c,Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=40cm\)
\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)( tỉ số đồng dạng của a )
\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}cm\)
\(\dfrac{AH}{CH}=\dfrac{AB}{AC}\)( tỉ số đồng dạng của b )
\(CH=\dfrac{AH.AC}{AB}=\dfrac{128}{5}cm\)
\(\rightarrow BH=BC-CH=\dfrac{72}{5}cm\)
LRLPLL . TỚ chỉ gợi ý thôi vì bận . a) 2△∼ với nhau (g.g) có 1 góc =90 độ và đều có chung 1 góc C
b) dựa vào 2△ trên => \(\frac{CM}{BC}\)=\(\frac{CE}{AC}\) THAY số sẽ ra kq BC tính theo đl py ta go . ME cũng tính như CE chỉ khác ở chỗ \(\frac{CM}{BC}\)=\(\frac{ME}{AB}\)thay số sẽ ra ME.
c) đổi chiều tỉ số \(\frac{CM}{BC}\)=\(\frac{CE}{AC}\)=> \(\frac{CM}{CE}\)=\(\frac{BC}{AC}\) SAU đó xét △MCB và △ECA CÓ tỉ số vừa ra ở trên. và ^MCB=^ECA ( do M ∈ AC,E∈AB)=> DPCM