Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
a: Xét ΔADB vuông tại D và ΔCKB vuông tại K có
góc B chung
Do đó:ΔADB\(\sim\)ΔCKB
Suy ra: BA/BC=BD/BK
hay \(BA\cdot BK=BC\cdot BD\)
b: Xét ΔHAK vuông tại K và ΔHCD vuông tại D có
\(\widehat{AHK}=\widehat{CHD}\)
Do đó; ΔHAK\(\sim\)ΔHCD
Suy ra: HA/HC=HK/HD
hay \(HA\cdot HD=HK\cdot HC\)
A B C D E F
Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(\widehat{A}\)chung
\(\widehat{AEB}=\widehat{AFC\:}=90^0\)
suy ra: \(\Delta ABE~\Delta ACF\)(g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AE}{AF}\)hay \(\frac{AE}{AB}=\frac{AF}{AC}\)
Xét \(\Delta AEF\)và \(\Delta ABC\)có:
\(\frac{AE}{AB}=\frac{AF}{AC}\) (cmt)
\(\widehat{A}\) chung
suy ra: \(\Delta AEF~\Delta ABC\) (c.g.c)
1: Xét tứgiác BHCK có
BH//CK
BK//CH
Do đó:BHCK là hình bình hành
2: Xét ΔHEA vuông tai E và ΔHDB vuông tại D có
góc EHA=góc DHB
Do đo: ΔHEA đồng dạng với ΔHDB
Suy ra: HE/HD=HA/HB
hay HE/HA=HD/HB
Xét ΔhED và ΔHAB có
HE/HA=HD/HB
góc EHD=góc AHB
Do đo: ΔHED đồng dạng với ΔHAB
a: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{ECB}\) chung
Do đó: ΔCEB~ΔCDA
=>\(\dfrac{BE}{DA}=\dfrac{CB}{CA}\)
=>\(BE\cdot CA=CB\cdot DA\)
b: ΔCEB~ΔCDA
=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
=>\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
Xét ΔCED và ΔCBA có
\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
\(\widehat{ECD}\) chung
Do đó: ΔCED~ΔCBA
=>\(\widehat{CED}=\widehat{CBA}\)
c: Xét ΔABC có
BE,AD là các đường cao
BE cắt AD tại H
Do đó: H là trực tâm của ΔABC
=>CH\(\perp\)AB
=>C,H,F thẳng hàng
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác EHDC có \(\widehat{HEC}+\widehat{HDC}=90^0+90^0=180^0\)
nên EHDC là tứ giác nội tiếp
Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(EHDC nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EB là phân giác của góc DEF