Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H N K
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
AB = AC (\(\Delta ABC\) cân tại A)
AM chung
BM = CM (suy từ gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
hay \(\widehat{HBM}=\widehat{KCM}\)
Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;
BM = CM
\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)
\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)
Vì \(\Delta ABM=\Delta ACM\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)
\(\Rightarrow\Delta ABM\) vuông tại M
Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM^2=17^2-8^2\)
\(\Rightarrow AM^2=15^2\)
\(\Rightarrow AM=15\)
Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)
Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).
Có nhiều cách chứng minh, trong bài này mình sẽ dùng một cách.
Giải:
A B C M D
Trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD.
Xét \(\Delta AMB\) và \(\Delta CMD\), có:
\(MB=MC\) (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(MA=MD\) (M là trung điểm của AD)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) (Hai góc tương ứng)
\(\Rightarrow\) AB song song với DC (Vì có hai góc so le trong bằng nhau)
Mà: \(\widehat{BAC}=90^0\)
\(\Rightarrow\widehat{DCA}+\widehat{BAC}=180^0\) (Hai góc trong cùng phía)
\(\Rightarrow\widehat{DCA}=180^0-\widehat{BAC}=180^0-90^0=90^0\)
\(\Rightarrow\widehat{BAC}=\widehat{DCA}\left(=90^0\right)\)
Xét \(\Delta ABC\) và \(\Delta CDA\), có:
\(\widehat{BAC}=\widehat{DCA}=90^0\) (Chứng minh trên)
\(AB=CD\) (\(\Delta AMB=\Delta CMD\))
AC là cạnh chung
\(\Rightarrow\Delta ABC=\Delta CDA\) (Hai cạnh góc vuông)
\(\Rightarrow BC=DA\) (Hai cạnh tương ứng)
\(\Leftrightarrow\dfrac{1}{2}BC=\dfrac{1}{2}DA\)
Hay \(AM=\dfrac{1}{2}BC\) (đpcm)
Chúc bạn học tốt!
Mình nghĩ câu này không cần chứng minh đâu, tính chất này đã được suy ra rồi: Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.
B A C M K H G I
a) Xét hai tam giác MHB và MKC có:
MB = MC (gt)
Góc HMB = góc KMC (đối đỉnh)
MH = MK (gt)
Vậy: tam giác MHB = tam giác MKC (c - g - c)
c) Ta có: AM = MB = MC = \(\dfrac{1}{2}\) BC (đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)
=> Tam giác MAB cân tại M
=> MH là đường cao đồng thời là đường trung tuyến
hay HB = HA
=> CH là đường trung tuyến ứng với cạnh AB
Hai đường trung tuyến AM và CH cắt nhau tại G
=> G là trọng tâm của tam giác ABC
Mà BI đi qua trọng tâm G (G thuộc BI)
Do đó BI là đường trung tuyến còn lại
hay I là trung điểm của AC (đpcm).
A B C M D 1 2
Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)
Giải:
a, ΔABD = ΔACD:
Xét ΔABM và ΔACM có:
+ AB = AC (ΔABC cân tại A)
+ AM là cạnh chung.
+ BM = CM (trung tuyến AM)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
Xét ΔABD và ΔACD có:
+ AB = AC (ΔABC cân tại A)
+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)
+ AD là cạnh chung.
=> ΔABD = ΔACD (c - g - c)
b, ΔBDC cân:
Ta có: ΔABD = ΔACD (câu a)
=> BD = CD (2 cạnh tương ứng)
=> ΔBDC cân tại D.
A B C D M
a) ΔABD=ΔACD
Xét ΔABM và ΔACM ta có:
AB=AC (ΔABC cân tại A)
AM chung
BM=BC (gt)
\(\Rightarrow\)ΔABM = ΔACM (c.c.c)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
Xét ΔABD và ΔACD ta có:
AB=AC (ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (cmt)
AM cạnh chung
\(\Rightarrow\) ΔABD = ΔACD (c.g.c)
b) ΔBDC cân
Vì ΔABD = ΔACD ( theo câu a)
\(\Rightarrow\)BD=DC (2 cạnh tương ứng)
\(\Rightarrow\)ΔBDC cân tại D (đpcm)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)
Từ đó:
\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)
\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)
Vậy \(x=2006;y=-2003.\)
a, Ta có: \(A=\left|x-1\right|+\left|x-2017\right|=\left|x-1\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A\ge\left|x-1+2017-x\right|=\left|-2016\right|=2016\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-1\ge0\\2017-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\le2017\end{matrix}\right.\Rightarrow1\le x\le2017\)
Vậy \(MIN_A=2016\) khi \(1\le x\le2017\)
b, Ta có: \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left|x-5\right|\ge0\end{matrix}\right.\Rightarrow\left(x-5\right)^2+\left|x-5\right|\ge0\)
\(\Rightarrow B=\left(x-5\right)^2+\left|x-5\right|+2014\ge2014\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left|x-5\right|=0\end{matrix}\right.\Rightarrow x=5\)
Vậy \(MIN_B=2014\) khi x = 5
b may cho chú là chung nghiệm là x=5 nếu (x-6)^2+|x-5| thì sao? cần phải nhớ (x-6)^2=|x-6|^2 sau đó áp dụng |a|+|b|>=|a+b|
\(-\dfrac{628628}{942942}=-\dfrac{2.314314}{3.314314}=-\dfrac{2}{3}\)
Sao bt sai, nhỡ là cách khác thì sao???
chắc chắn sai mà . Đọc kĩ lại đi!!!