Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bài này có thể search trên google trước khi làm nhé
Link tham khảo :
Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến
Good Luck
120 y x m y' m d c O
a) Ta có: \(\widehat{xOy}=120^o\)
có Om là tia phân giác
=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)
Oy' là tia đối tia Oy
=> \(\widehat{yOy'}=180^o\)
=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)
=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)
Mặt khác Ox nằm giữa hai tia Om, Oy'
=> Õx là phân giác góc y'Om
b) Ta có: Od nằm phóa ngoài góc xOy
Oy' nằm phía ngoài góc xOy
Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)
=> Oy' nằm giữa hai tia Ox, Od
c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)
d) Ta có: On là phân giác góc dOc
mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)
=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)
=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)
O y x A t m n
a) Ta có: \(\widehat{xOy}+\widehat{OAt}=120^0+60^0=180^0\)
Mà hai góc ở vị trí: trong cùng phía bù nhau
Nên At // Oy
b) On là tia phân giác của góc xOy \(\Rightarrow\widehat{yOn}=\widehat{xOn}=\frac{\widehat{xOy}}{2}=\frac{120^0}{2}=60^0\)
Vì At // Oy => \(\widehat{xAt}=\widehat{xOy}=120^0\) (đồng vị)
Am là tia phân giác của góc xAt \(\Rightarrow\widehat{xAm}=\widehat{tAm}=\frac{\widehat{xAt}}{2}=\frac{120^0}{2}=60^0\)
Ta thấy \(\widehat{xAm}=\widehat{xOn}=60^0\)
Mà hai góc này ở vị trí đồng vị
=> On // Am
1)
A B C D E O 50
Vì OC là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOC}=\widehat{COB}=\dfrac{1}{2}.\widehat{AOB}=\dfrac{1}{2}.50^0=25^0\)
Trên cùng 1 nửa mặt phẳng có bờ là tia OD, có chứa tia OC mà \(\widehat{COB}< \widehat{COD}\left(25^0< 90^0\right)\)nên tia OB nằm giữa OC và OD
\(\Rightarrow\widehat{COB}+\widehat{BOD}=\widehat{COD}\)
\(\Rightarrow\widehat{BOD}=\widehat{COD}-\widehat{COB}\)
\(\Rightarrow\widehat{BOD}=90^0-25^0=65^0\)
Vì OA là tia đối của tia OE
\(\Rightarrow\widehat{AOE}=180^0\)
Trên cùng 1 nửa mặt phẳng có bờ là tia AE, có tia OB mà \(\widehat{AOE}< \widehat{AOE}\left(50^0< 180^0\right)\)nên tia OB nằm giữa OA và OE
\(\Rightarrow\widehat{AOB}+\widehat{BOE}=\widehat{AOE}\)
\(\Rightarrow\widehat{BOE}=\widehat{AOE}-\widehat{AOB}\)
\(\Rightarrow\widehat{BOE}=180^0-50^0=130^0\)
Trên cùng 1 nửa mặt phẳng có bờ là tia OE, có chứa tia OB và OD mà \(\widehat{BOD}< \widehat{BOE}\left(65^0< 130^0\right)\) nên tia OD nằm giữa OB và OE
\(\Rightarrow\widehat{BOD}+\widehat{DOE}=\widehat{BOE}\)
\(\Rightarrow\widehat{DOE}=\widehat{BOE}-\widehat{BOD}\)
\(\Rightarrow\widehat{DOE}=130^0-65^0=65^0\)
Vì tia OD nằm giữa tia OB và OE
mà \(\widehat{BOD}=\widehat{DOE}\left(=65^0\right)\)
\(\Rightarrow OD\) là tia phân giác của \(\widehat{BOE}\left(đpcm\right)\)
Vậy OD là tia phân giác của \(\widehat{BOE}\)
2)
A B C D O 130
Trên cùng 1 nửa mặt phẳng có bờ là tia OB, có chứa tia OD mà \(\widehat{BOD}< \widehat{BOA}\left(90^0< 130^0\right)\) nên tia OD nằm giữa tia OA và OB
\(\Rightarrow\widehat{AOD}+\widehat{DOB}=\widehat{AOB}\)
\(\Rightarrow\widehat{AOD}=\widehat{AOB}-\widehat{DOB}\)
\(\Rightarrow\widehat{AOD}=130^0-90^0=40^0\)
Trên cùng 1 nửa mặt phẳng có bờ là tia OB, c ó chứa tia OD và OC mà \(\widehat{AOD}< \widehat{AOC}\left(40^0< 90^0\right)\)nên tia OD nằm giữa OA và OC
\(\Rightarrow\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)
\(\Rightarrow\widehat{COD}=\widehat{AOC}-\widehat{AOD}\)
\(\Rightarrow\widehat{COD}=90^0-40^0=50^0\)
Vậy \(\widehat{COD}=50^0\)