Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|x-4\right|\ge0\left(\forall x\right)\)
Và \(\left(y-1\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left|x-4\right|+\left(y-1\right)^2+10\ge10\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-4\right|=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-4=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=1\end{cases}}}\)
Vậy GTNN của biểu thức bằng 10 khi và chỉ khi x = 4 và y = 1
Ta có : |x-4|+ (y-1)2 +10
Vì |x-4| \(\ge\)0 \(\forall\)x
(y-1)2 \(\ge\)0\(\forall\)y
<=> |x-4|+ ( y-1)2 \(\ge\)0 \(\forall\)x ; y
<=> |x-4|+ ( y-1)2 +10 \(\ge\)0+10
<=> |x-4|+ ( y-1)2 +10 \(\ge\)10
Vậy GTNN của biểu thức là 10 khi \(\hept{\begin{cases}\left|x-4\right|=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-4=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=1\end{cases}}}\)
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)
\(M=\left|x-y+1\right|-\left(x-3\right)\left(3-x\right)-1=\left|x-y+1\right|+\left(x-3\right)^2-1\)
Mà \(\left|x-y+1\right|+\left(x-3\right)^2\ge0\) với mọi x, y \(\Rightarrow\left|x-y+1\right|+\left(x-3\right)^2-1\ge-1\)với mọi x, y
Hay \(M\ge-1\) với mọi x, y
Vậy Mmin = -1 khi x - 3 = 0 và x - y + 1 = 0 => x = 3 và y = 4
Để biểu thức trên nguyên thì \(x^4y^4\) chia hết cho 15, nghĩa là phải có một số chia hết cho 3 và một số chia hết cho 5.
Ngoài ra, nếu ĐK trên thoả mãn là đủ, vậy để biểu thức có giá trị nhỏ nhất mình cho \(x=3,y=5\).
Đáp số là \(15^3\)
a) Vì (x+2)2 >/ 0
=> \(A\le\frac{3}{0+4}=\frac{3}{4}\Rightarrow Amax=\frac{3}{4}\Leftrightarrow x+2=0\Rightarrow x=-2\)
b) Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(B\ge0+0+1=1\Rightarrow Bmin=1\Leftrightarrow\int^{x+1=0}_{y+3=0}\Rightarrow\int^{x=-1}_{y=-3}\)
Ta có :
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge2xy\Leftrightarrow\left(x-y\right)^2\ge0\)
Áp dụng ta được :
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{\frac{1}{4}}{2}=\frac{1}{8}\)
Vậy \(M_{min}=\frac{1}{8}\Leftrightarrow x=y=\frac{1}{2}\)