Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0< =>x+y=-z=>\left(x+y\right)^2=\left(-z\right)^2.\)
\(< =>x^2+2xy+y^2=z^2< =>x^2+y^2-z^2=-2xy\)
\(< =>\left(x^2+y^2-z^2\right)=\left(-2xy\right)^2\)
\(< =>x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)
\(< =>x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)
\(< =>2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=\left(x^2+y^2+z^2\right)^2.\)
\(< =>x^4+y^4+z^4=\frac{\left(x^2+y^2+z^2\right)^2}{2}=\frac{a^4}{2}\)
Vậy \(x^4+y^4+z^4=\frac{a^4}{2}\)
mọi người có biết khi âm điểm thì phải làm thế nào để hết âm điểm ko
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
\(x+y+z=0\)
=>\(\left(x+y+z\right)^2=0\)
=>\(x^2+y^2+z^2+2xy+2yz+2xz=0\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
=>\(2+2\left(xy+yz+xz\right)=0\)
=>\(xy+yz+xz=-1\)
=>\(\left(xy+yz+xz\right)^2=1\)
=>\(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=1\)
=>\(x^2y^2+y^2z^2+x^2z^2+2xyz\left(y+z+x\right)=1\)
=>\(x^2y^2+y^2z^2+x^2z^2+2.xyz.0=1\)
=>\(x^2y^2+y^2z^2+x^2z^2=1\)
Mặt khác: \(x^2+y^2+z^2=2\)
=>\(\left(x^2+y^2+z^2\right)^2=4\)
=>\(x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2=4\)
=>\(x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=4\)
=>\(x^4+y^4+z^4+2.1=4\)
=>\(x^4+y^4+z^4+2=4\)
=>\(x^4+y^4+z^4=2\)
ta thấy \(\left(x^2+\frac{1}{x^2}\right)\left(x^2-\frac{1}{x^2}\right)=\left(x^4-\frac{1}{x^4}\right)\)
\(\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}\right)=\left(x^4+\frac{1}{x^4}\right)+2\)
suy ra \(y=\frac{\left(x^4+\frac{1}{x^4}\right)+2}{\left(x^4-\frac{1}{x^4}\right)}\)
<=> \(y=z+\frac{2}{\left(x^4-\frac{1}{x^4}\right)}\)
<=>\(z=\frac{2}{\left(x^4-\frac{1}{x^4}\right)}-y\)
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
Ta có : \(x+y+z=0\)
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow14+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=-14\)
\(\Leftrightarrow xy+yz+xz=-7\)
\(\Leftrightarrow\left(xy+yz+xz\right)^2=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2\left(xy^2z+2x^2yz+2xyz^2\right)=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2+2xyz.0=49\)
\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2=49\)
Lại có : \(x^2+y^2+z^2=14\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=196\)
\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+x^2z^2\right)=196\)
\(\Leftrightarrow x^4+y^4+z^4+2.49=196\)
\(\Leftrightarrow x^4+y^4+z^4=196-98\)
\(\Leftrightarrow A=98\)
Vậy \(A=98\)